Research on Controlling Method of High-Power Electromagnetic Transmitter Power Supply

2013 ◽  
Vol 339 ◽  
pp. 614-620
Author(s):  
Fei Yu

High-power electromagnetic transmitter power supply is an important part of deep geophysical exploration equipment, especially in complex environments, where how to control the high accuracy and stable output of the power supply as well as the redundancy safety of the system become the key issue in its designing. A triple-loop control including inner current loop, outer voltage loop and load current forward feedback and a digitalized voltage/current sharing control method are proposed for the realization of the rapid, stable and highly accurate output of the system. System simulation and field geological exploration experiments demonstrate the effectiveness of the control method which could ensure both the systems excellent stability and the outputs accuracy.

2014 ◽  
Vol 8 (1) ◽  
pp. 170-177 ◽  
Author(s):  
Chao Wu ◽  
Bingjuan Lu ◽  
Yuwang Ge

A novel parallel current-sharing control method of switch power supply is proposed, on the basis of a detailed analysis of several common parallel current-sharing control methods and recent related patents. Only the current of switch power modules with maximum and minimum output current will be regulated, which is selected by the extreme current selection circuit in this method. Four cases with different extremum situation are discussed, and in each case, principles and equations are given. Finally the current-sharing control of switch power supply parallel system is realized. Experimental results show that the current-sharing method is reasonable and effective.


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 871 ◽  
Author(s):  
Jinfeng Liu ◽  
Xiaohai Tan ◽  
Xudong Wang ◽  
Herbert Ho-Ching IU

In the present study, a novel multiple three-phase low-voltage and high-current permanent magnet synchronous generation system is proposed, which has only half-turn coils per phase. The proposed system is composed of a generator and two confluence plates with 108 rectifier modules. The output can reach up to 10,000 A continuous DC power supply, which is suitable for the outdoors and non-commercial power supply. The application of the Lyapunov algorithm in the synchronous rectification control was optimized. A current sharing loop control was added to the closed-loop control to ensure a stable output voltage and the output current sharing of each rectifier module. Since the two control variables solved by the Lyapunov algorithm were coupled and the negative definite function of the Lyapunov algorithm could not be guaranteed in this system, a simple decoupling method was used to decouple the control variables. Compared to the conventional control, the proposed strategy highly improved the dynamic performance of the system. The effectiveness of the proposed strategy was verified by the simulation. The 5 V/10,000 A hardware experiment platform was built, which proved the feasibility and validity of the proposed strategy for a high-power generation system.


2013 ◽  
Vol 655-657 ◽  
pp. 1609-1613
Author(s):  
Yu Hao Zhang

The dual-loop control method, in which inner-loop is the current and outer-loop is the voltage, is proposed to design a high-efficient precise numerical control parallel power supply system, it operates at input voltage of 24V, output voltage of 6-12V and output current of 0-4A. The current ratio of the parallel circuits can be set arbitrarily. Precise adjustment of output current and improvement of efficiency are realized by width modulation and synchronous buck-topology switching power supply, the output current error is smaller than 20mA and DC-DC conversion efficiency is up to 90%; to make output voltage error smaller than 30 mV and the current-sharing error smaller than 0.5%, digital calibration technology and PID control algorithm are used. In addition, this system is equipped with the function of overload protection, double-source redundant heat standby and turn-off, etc.


2012 ◽  
Vol 14 (10) ◽  
pp. 941-946 ◽  
Author(s):  
Zhe Zhu ◽  
Yinfeng Zhu ◽  
Ronglin Huang ◽  
Peng Fu ◽  
Yixiao Ding

2020 ◽  
Vol 30 (01) ◽  
pp. 2050005
Author(s):  
Lihui Yang ◽  
Lan Yang ◽  
Fang Yang ◽  
Xikui Ma

This paper reports the slow- and fast-scale instabilities in the parallel-connected single-phase H-bridge inverters and discusses the two types of instabilities from the practical design viewpoint. Simulations show that the slow-scale instability which occurs in the whole line cycle is a type of global instability, whereas the fast-scale instability which occurs around the middle time of each half-line cycle is a type of local instability. In order to reveal the mechanisms of the slow- and fast-scale instabilities, theoretical analyses are carried out through the derived averaged model and discrete-time model, respectively. It is identified that the slow-scale instability is due to the occurrence of Hopf bifurcation, and the fast-scale instability manifests itself as period-doubling bifurcation. Furthermore, stability boundaries in various design parameter spaces considering the mismatches in different system parameters between inverter modules, as well as the effects of the current-sharing control loop on the slow- and fast-scale instabilities are also given. Besides, the influences of the nonlinear load and the control method for parallel system on the two types of instabilities are briefly discussed. These findings can be used to guide the tuning of the paralleled inverter system parameters to ensure stable operation in practice. Finally, experimental results are presented to verify the results of the simulation and theoretical analysis.


Author(s):  
Hongtao Liao ◽  
◽  
Jun Peng ◽  
Yanhui Zhou ◽  
Zhiwu Huang ◽  
...  

In this paper, a new decentralized gradient-based cooperative control method is proposed to achieve current sharing for parallel chargers in energy storage-type light rail vehicle systems. By employing a generalized artificial potential function to characterize the interaction rule for subchargers, the current-sharing control problem is converted into an optimization problem. Based on the gradient of the potential function, a decentralized gradient cooperative control law is derived. A general saturation function is introduced in the proposed control to guarantee the boundedness of the control output. The stability of the closed-loop system under the proposed decentralized gradient control is proven with the aid of a Lyapunov function. Simulation results are provided to verify the feasibility and validity of the proposed distributed current-sharing control method.


Sign in / Sign up

Export Citation Format

Share Document