scholarly journals The Importance of Water Temperature Fluctuations in Relation to the Hydrological Factor. Case Study – Bistrita River Basin (Romania)

2014 ◽  
Vol 8 (2) ◽  
pp. 183-194 ◽  
Author(s):  
Gianina Maria Cojoc ◽  
Gheorghe Romanescu ◽  
Alina Tirnovan

Abstract The increase in most components of the climate over the past 50 years, including air and water temperature, is a real phenomenon, as attested by the numerous specialized researches according to IPCC (2013). The water temperature is one of the most important climatic components in analyzing the hydrological regime of the Bistrita River (Romania). The thermal regime of the Bistrita River basin and the frost phenomena associated with the risk factor are particularly important and frequently appear in this area. In recent years, under the Siret Water Basin Administration, this parameter was permanently monitored, so we could do an analysis, which shows that the water temperature fluctuations, influenced by air temperature, lead to the emergence of the ice jam phenomenon. The present study aims to analyze the water temperature, as compared to the air temperature, and the effect of these components on the liquid flow regime (the values were recorded at the hydrological stations on the main course of the Bistrita River). The negative effects resulted from the ice jam phenomenon require developing methods of damage prevention and defense. The frost phenomena recorded after the construction of the Bicaz dam are analyzed in this article

Author(s):  
Karamoko Sanogo ◽  
Birhanu B. Zemadim ◽  
Souleymane Sanogo ◽  
Ashatu Abdulkadiri ◽  
Abdramane BA

Forests constitute a key component of the Earth system but the sustainability of the forest reserves in the semi-arid zone is a real concern since its vegetation is very sensitive to the climate fluctuation. The understanding of the mechanisms for the interaction vegetation-climate is poorly studied in the context of African Sahel. In this study, the characteristics of the vegetation response to the fluctuations of precipitation and temperature is determined for the forest reserve of Fina. Rainfall estimates, air temperature and NDVI are used to establish the lag correlations between fluctuations of vegetation and climate variables at both seasonal and interannual bases. Results shows increasing tendency of NDVI started from the 1990s coinciding the recovery of the rainfall from the 1980s drought and the obtained correlation(r=0.66) is statistically significant (pvalue<0.01). The strongest responses of vegetation to rainfall and temperature fluctuations were found after 30 and 15 days, respectively. Moreover, at shorter time lag (e.g. 15 days) more pronounced vegetation responses to both rainfall and temperature were found in agricultural dominated land while at longer time lag (e.g. 30 days) stronger response was observed in Bare dominated land. The vegetation response to the climate fluctuation is modulated by the land use/cover dynamics. Keywords: NDVI, Rainfall, Air temperature, vegetation response, Fina Forest Reserve, Mali.


2021 ◽  
Author(s):  
Hanieh Seyedhashemi ◽  
Florentina Moatar ◽  
Jean-Philippe Vidal ◽  
Dominique Thiery ◽  
Céline Monteil ◽  
...  

<p>Air temperature has been increasing all around the world over the past decades. Owing to its sensitivity to air temperature, it is consequently expected that stream temperature experiences an increase as well. However, due to paucity of long-term stream temperature data, assessments of the magnitude of such trends in relation with landscape and hydrological changes have remained scarce.</p><p>The present study used a physically-based thermal model (T-NET: Temperature-NETwork), coupled with a semi-distributed hydrological model (EROS) to reconstruct past daily stream temperatures and discharges at the scale of the Loire River basin in France (10<sup>5</sup> km<sup>2</sup> with 52278 reaches). The ability of both models to reconstruct long-term trends was assessed at 44 gauging stations and 11 stream temperature stations.  </p><p>T-NET simulations over the 1963-2017 period show that there has been a significant increasing trend in stream temperatures for at least 70% of reaches in all seasons (median=0.36 °C/decade). Significantly increasing trends are more prominent in spring (Mar-May) and summer (Jun-Aug) with a median increase of 0.37 °C (0.11 to 0.8°C) and 0.42°C (0.14 to 1 °C) per decade, respectively. For 81 % of reaches, annual stream temperature trends are greater than annual air temperature trends (median ratio=1.21; interquartile ranges: 1.06-1.44). Greater increases in stream temperature in spring and summer are found in the south of the basin, mostly in the Massif Central (up to 1°C/decade) where greater increase in air temperature (up to 0.67 °C/decade) and greater decrease in discharge (up to -16%/decade) occur jointly. The increase of stream temperature is also higher in large rivers compared to small rivers where riparian vegetation shading mitigate the increase in temperature. For the majority of reaches, changes in stream temperature, air temperature, and discharge significantly intensified in the late 1980s.</p><p>These climate-induced changes in the annual and seasonal stream temperature could help us to explain shifts in the phenology and geographical distribution of cold-water fish especially in the south of the basin where trends are more pronounced.</p>


2007 ◽  
Vol 24 (2) ◽  
pp. 285-296 ◽  
Author(s):  
Normand Bussières ◽  
Raoul J. Granger

Abstract Near-surface bulk water temperature measured in large northern lakes during the warm season with buoys can be characterized by three components: a slowly varying seasonal-/climate-related trend, fluctuations at the time scale of weather perturbations, and rapid daily fluctuations. When thermal infrared data are used to estimate surface water temperature, an additional term relating the differences between the skin and bulk temperatures is implied. Buoy data in this work serve to demonstrate the existence of a period of strong signal coupling between fluctuations of water temperature and air temperature. The period of strong signal coupling does not extend beyond the date of maximum temperature in the water temperature trend. During this period, a simple linear transformation of air temperature fluctuations can be used to simulate the buoy water temperature fluctuations. Attempts to simulate water temperature fluctuations from air temperature alone are not possible beyond this period. Water temperature simulation error depends on the distance of the air temperature measurement from the buoy, ranging from ±1.1°C at 0 km to ±1.4°C at 40 km. The method developed with buoy data is applied to the combination of satellite thermal infrared and operationally measured air temperature data to simulate water temperatures. Through the use of satellite data, the water temperature simulations are extended beyond the period of strong coupling.


2010 ◽  
Vol 14 (10) ◽  
pp. 1979-1987 ◽  
Author(s):  
J. Wang ◽  
H. Li ◽  
X. Hao

Abstract. The spatial and temporal variations of snowcover distribution, and snowmelt runoff are considered as sensitive indicators for climatic change. The purpose of this paper is to analyze and forecast the responses of snowmelt runoff to climate change in an inland river basin. The upper basin of Heihe River in Northwestern China was chose as the study area, and the observation data from the meteorological and hydrological stations were utilized to analyze the status and regularity of the climatic change over the past 50 years. Snow cover area was obtained by an optimized technology using Moderate Resolution Imaging Spectroradiometer data with Normalized Difference Snow Index adjustment and topographic correction. A concept of potential snowmelt was suggested to illustrate the response of spatial snowmelt to climate change. The results show that the annual SCA proportion and the potential snowmelt keep an increasing trend since 2000. There is a negative relationship between annual air temperature and SCA proportion from 2000 to 2008. Snowmelt Runoff Model was chose to simulate snowmelt runoff and scenario forecast the change trend of snowmelt runoff in this region. The results show that climatic warming was apparent in the upper basin of Heihe River over the past 50 a. Annual average air temperature of three different weather stations located in the basin has increased 2.1 °C, 2.6 °C and 2.9 °C respectively from 1956 to present. The snowmelt runoff has increased obviously from 1970 to present. With different warming climate scenarios, the results by using SRM simulating showed that the first occurred time of snowmelt runoff shift ahead and discharge become larger as responses of snowmelt runoff to air temperature increasing, and the influence of temperature rising on average discharge of the whole snow season is not obvious.


Sign in / Sign up

Export Citation Format

Share Document