scholarly journals A Review of Electrical Methods as A Worthy Tool for Mineral Exploration

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Priscillia Egbelehulu ◽  
Abu Mallam ◽  
Naeem Abdulsalam ◽  
Taiwo Adewumi

AbstractThis paper focuses on the review of electrical geophysical methods such as electrical resistivity and induced polarization as a technique for mineral exploration. It highlights the general fundamental principles of the electrical methods and result from other investigations. Most rock – forming minerals are insulators, and electrical current is carried through rocks mainly by the passage of ions in pore waters. In light of this, most rocks conduct electricity by electrolytic rather than electronic processes. Since metals and most metallic sulphides conduct electricity efficiently by the flow of electrons, electrical method is efficient and important in environmental investigation especially in areas where metallic objects are the targets and also in the search for sulphide ores. The results from various research showed the applicability of these geophysical ground methods, specially the Induce Polarization method, as a support tool in the identification and selection of exploration targets for test drilling.

2020 ◽  
Vol 25 (3) ◽  
pp. 415-423
Author(s):  
Ahmed Lachhab ◽  
El Mehdi Benyassine ◽  
Mohamed Rouai ◽  
Abdelilah Dekayir ◽  
Jean C. Parisot ◽  
...  

The tailings of Zeida's abandoned mine are found near the city of Midelt, in the middle of the high Moulouya watershed between the Middle and the High Atlas of Morocco. The tailings occupy an area of about 100 ha and are stored either in large mining pit lakes with clay-marl substratum or directly on a heavily fractured granite bedrock. The high contents of lead and arsenic in these tailings have transformed them into sources of pollution that disperse by wind, runoff, and seepage to the aquifer through faults and fractures. In this work, the main goal is to identify the pathways of contaminated water with heavy metals and arsenic to the local aquifers, water ponds, and Moulouya River. For this reason, geophysical surveys including electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and very low-frequency electromagnetic (VLF-EM) methods were carried out over the tailings, and directly on the substratum outside the tailings. The result obtained from combining these methods has shown that pollutants were funneled through fractures, faults, and subsurface paleochannels and contaminated the hydrological system connecting groundwater, ponds, and the river. The ERT profiles have successfully shown the location of fractures, some of which extend throughout the upper formation to depths reaching the granite. The ERT was not successful in identifying fractures directly beneath the tailings due to their low resistivity which inhibits electrical current from propagating deeper. The seismic refraction surveys have provided valuable details on the local geology, and clearly identified the thickness of the tailings and explicitly marked the boundary between the Triassic formation and the granite. It also aided in the identification of paleochannels. The tailings materials were easily identified by both their low resistivity and low P-wave velocity values. Also, both resistivity and seismic velocity values rapidly increased beneath the tailings due to the compaction of the material and lack of moisture and have proven to be effective in identifying the upper limit of the granite. Faults were found to lie along the bottom of paleochannels, which suggest that the locations of these channels were caused by these same faults. The VLF-EM surveys have shown tilt angle anomalies over fractured areas which were also evinced by low resistivity area in ERT profiles. Finally, this study showed that the three geophysical methods were complementary and in good agreement in revealing the pathways of contamination from the tailings to the local aquifer, nearby ponds and Moulouya River.


2021 ◽  
pp. 104940
Author(s):  
Hossain Rahimi ◽  
Maysam Abedi ◽  
Mahyar Yousefi ◽  
Abbas Bahroudi ◽  
Gholam-Reza Elyasi

Author(s):  
Alfredo Cigada ◽  
Elisabetta Leo ◽  
Marcello Vanali

A full characterization of the mechanical parameters for vibrating MEMS sensors is required before integrating the mechanical and the electronic part. This is to verify that the main design specifications are fulfilled before sensors are available on the market. The main goal is to accurately establish the well-working devices in the shortest time. In this paper the electrical method based on the measurement of the GND current is used to satisfy this purpose. To check the validity of the achieved results through this method a comparison is done with those obtained through the widely used optical method based on vibration measurements through by means of a Laser Doppler Vibrometer (LDV).


2005 ◽  
Author(s):  
Jose´ Ricardo Alcantara ◽  
Kazuo Hatakeyama

Quality Function Deployment — QFD combined with Concurrent Engineering — CE as a support tool for the competitive strategy on product development is devised. In this study, beyond the proposed method, it is intended to develop relations with innovational models, arrangements of innovation and technology transfer, learning in organizations, and how the diffusion of knowledge occurs. QFD can also be one those main tools of CE as this identifies the customer’s main requirements translating into the features required for products. The field survey of exploratory and descriptive type, using the questionnaire as data collection technique, was carried out in the manufacturing companies in the fast growing sectors of automobile industries in the State of Parana located in the Southern of Brazil. The selection of sample companies was made intentionally to guarantee of return of answer through the accessibility criteria. The reasons for this fact that can be pointed out are: the use of “home made” methodology to fulfill customer’s requirements, unknowing of the methodology, and the lack of adequate training to use QFD. It is expected that the results of findings, if disseminated adequately among local companies, will help to enhance the competitiveness performance beyond the local market scenario.


2011 ◽  
Vol 374-377 ◽  
pp. 2256-2260
Author(s):  
Sun Yong

In the process of engineering prospective design and constructing, it is necessary to avoid the adverse impact of geological phenomena, such as fault, karst and landslide. Therefore, it’s important to choose a favorable project address by scientific and effective detection with engineering geological conditions. The main exploration method for geological conditions is the geophysical exploration, including: high density electrical method, ground penetrating Radar, seismic exploration method and so on. The discrimination result with a single geological method changes much, and it is difficult to make an accurate analysis of the geological conditions. So we should composite a variety of exploration methods. In this paper, it expounds the fundamental, the working method, data explanations of the high density electrical method and ground penetrating Radar firstly. And then it takes exploration of candidate sites of an aluminum waste disposal plant for example, the geological conditions of candidate sites are analyzed under the two geophysical methods. The study results of engineering site option have a positive role in guiding the work.


Author(s):  
Wagner Gadêa Lorenz ◽  
Miguel Bauermann Brasil ◽  
Lisandra Manzoni Fontoura ◽  
Guilherme Vaz Pereira

Software process definition requires choosing the process elements that appropriately fulfil the tailoring requirements, such as to prevent risks or to satisfy quality goals. The selection of appropriate process elements is usually done manually, making this process complex, time-consuming and error-prone. Our main objective is to define a systematic approach to tailor software process and a support tool to simplify and to support the tailoring process by improving the selection process of reusable process elements. We developed a systematic approach to tailor software process based on software process architectures and lines. This approach selects the process elements that appropriately match the tailoring requirements. A web tool was developed to support the use of the proposed approach. We concluded that the approach aids process engineer to make decisions for selecting a set of process elements suitable to the tailoring requirements and to the project context.


2016 ◽  
Vol 34 (1) ◽  
pp. 33-37
Author(s):  
Beata Zboromirska-Wnukiewicz ◽  
Witold Wnukiewicz ◽  
Krzysztof Kogut ◽  
Jan Wnukiewicz ◽  
Roman Rutowski ◽  
...  

AbstractRecent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.


Sign in / Sign up

Export Citation Format

Share Document