The loop-mediated isothermal amplification assay for rapid diagnosis of Babesia canis canis infections in dogs

2013 ◽  
Vol 16 (1) ◽  
pp. 131-133 ◽  
Author(s):  
Ł. Adaszek ◽  
M. Jankowska ◽  
M. Kalinowski ◽  
T. Banach ◽  
D. Wułupek ◽  
...  

Abstract The aim of this study was to use a rapid and easy DNA-based test, the loop-mediated isothermal amplification (LAMP), for diagnosis of Babesia canis canis infections in dogs. 10 DNA samples of 18S RNA-A and 10 DNA samples of 18S RNA-B of B. canis canis were used in the study. LAMP method could successfully detect DNA in all examined samples down to 0.1 pg dilution. Obtained results suggest that this method has high specificity and sensitivity and can be applied in analytical laboratories in diagnosis of canine babesiosis.

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Zhang Tie ◽  
Wang Chunguang ◽  
Wei Xiaoyuan ◽  
Zhao Xinghua ◽  
Zhong Xiuhui

To develop a rapid detection method ofStaphylococcus aureususing loop-mediated isothermal amplification (LAMP), four specific primers were designed according to six distinct sequences of thenucgene. In addition, the specificity and sensitivity of LAMP were verified and compared with those of PCR. Results showed that the LAMP reaction was completed within 45 min at 62.5°C, and ladder bands were appeared in LAMP products analyzed by gel electrophoresis. After adding 1x SYBR Green l, the positive reaction tube showed green color and the negative reaction tube remained orange, indicating that the LAMP has high specificity. The minimal detectable concentration of LAMP was1×102 CFU/mL and that of PCR was1×104 CFU/mL, indicating that the LAMP was 100 times more sensitive than the PCR. The LAMP method for detection ofStaphylococcus aureushas many advantages, such as simple operation, high sensitivity, high specificity, and rapid analysis. Therefore, this method is more suitable for the rapid on-site detection ofStaphylococcus aureus.


2011 ◽  
Vol 24 (1) ◽  
pp. 174-177 ◽  
Author(s):  
Jun Qiao ◽  
Qingling Meng ◽  
Xuepeng Cai ◽  
Chuangfu Chen ◽  
Zaichao Zhang ◽  
...  

Betacoronavirus 1 (BCoV-1) is an important pathogen causing diarrhea in calves. In the current study, a novel reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for rapid detection of BCoV-1 was successfully developed. The primers were designed to target the highly conserved fragment of BCoV-1 nucleocapsid gene. The assay displayed high specificity detecting only BCoV-1 with no cross reaction with other viruses. When 418 clinical samples from 6 different geographical areas of Xinjiang province were tested by the RT-LAMP method, the results indicated that this test is a simple, rapid, accurate, and sensitive method for the detection of BCoV-1.


2020 ◽  
Vol 48 (1) ◽  
Author(s):  
Hiroka Aonuma ◽  
Itoe Iizuka-Shiota ◽  
Tokio Hoshina ◽  
Shigeru Tajima ◽  
Fumihiro Kato ◽  
...  

Abstract Background Monitoring both invasion of Zika virus disease into free countries and circulation in endemic countries is essential to avoid a global pandemic. However, the difficulty lies in detecting Zika virus due to the large variety of mutations in its genomic sequence. To develop a rapid and simple method with high accuracy, reverse transcription-loop-mediated isothermal amplification (RT-LAMP) was adopted for the detection of Zika virus strains derived from several countries. Results Common primers for RT-LAMP were designed based on the genomic sequences of two standard Zika strains: African lineage, MR-766, and Asian lineage, PRVABC59. RT-LAMP reactions using a screened primer set, targeting the NS3 region, detected both Zika virus strains. The minimum detectable quantity was 3 × 10−2 ng of virus RNA. Measurable lag of reaction times among strains was observed. The RT-LAMP method amplified the target virus sequence from the urine and serum of a patient with a travel history in the Caribbean Islands and also provided a prediction about which lineage of Zika virus strain was present. Conclusions The RT-LAMP method using a well-optimized primer set demonstrated high specificity and sensitivity for the detection of Zika virus strains with a variety in genomic RNA sequences. In combination with the simplicity of LAMP reaction in isothermal conditions, the optimized primer set established in this study may facilitate rapid and accurate diagnosis of Zika fever patients with virus strain information.


Author(s):  
Maryam ARFAATABAR ◽  
Narjes NOORI GOODARZI ◽  
Davoud AFSHAR ◽  
Hamed MEMARIANI ◽  
Ghasem AZIMI ◽  
...  

  Background: Mycoplasma pneumoniae is a common cause of community-acquired pneumonia (CAP) worldwide, especially among children and debilitated populations. The present study aimed to investigate a loop-mediated isothermal amplification (LAMP) technique for rapid detection of M. pneumoniae in clini-cal specimens collected from patients with pneumonia. Methods: Throat swabs were collected from 110 outpatients who suffered from pneumonia. Throat swab samples were obtained from patients referred to the hospital outpatient clinics of Tehran University hospitals, Iran in 2017. The presence of M. pneumoniae in the clinical specimens was evaluated by LAMP, PCR and culture methods. Sensitivity and specificity of the LAMP and PCR assays were also determined. Results: Out of 110 specimens, LAMP assay detected M. pneumoniae in 35 specimens. Detection limit of the LAMP assay was determined to be 33fg /μL or ~ 40 genome copies/reaction. Moreover, no cross-reaction with genomic DNA from other bacteria was observed. Only 25 specimens were positive by the culture method. The congruence between LAMP assay and culture method was ‘substantial’ (κ=0.77). Specificity and sensitivity of LAMP assay were 88.2%, 100% in compare with culture. However, the con-gruence between LAMP assay and PCR assay was ‘almost perfect’ (κ=0.86). Specificity and sensitivity of LAMP assay were 92.5%, 100% in compare with PCR. Conclusion: Overall, the LAMP assay is a rapid and cost-efficient laboratory test in comparison to other methods including PCR and culture. Therefore, the LAMP method can be applied in identification of M. pneumoniae isolates in respiratory specimens.


2017 ◽  
Vol 11 (2) ◽  
pp. 20-27
Author(s):  
Arifa Akram

Disease diagnosis is important for implementation of proper therapeutic and prophylactic measures. Traditionally, disease diagnosis was depends upon isolation and identification of the causative organisms. This was followed by serology and after that molecular method. Molecular tests are valuable when early diagnosis is important. For this purpose, nucleic acid amplification (PCR, nucleic acid sequence-based amplification, self-sustained sequence replication, strand displacement amplification) is one of the most valuable tools not only for the diagnosis of infectious diseases but also used in advanced level research. The Loop-Mediated Isothermal Amplification (LAMP) is a unique nucleic acid amplification technique for diagnosis of various pathogens introduced at 2000 by Notomi and his colleagues which is simple, easy, rapid and cost effective when compared to PCR due to its high specificity, sensitivity, and rapidity. It uses a set of six primers and a DNA polymerase with stranddisplacement activity. Major advantage of LAMP method is its cost-effectiveness as it can be done simply by using waterbath or heating block. Bangladesh J Med Microbiol 2017; 11 (2): 20-27


2021 ◽  
Vol 7 (12) ◽  
pp. 115333-115354
Author(s):  
Sarah Amado Ribeiro ◽  
Calebe Bertolino Marins De Campos ◽  
Hérida Samaya Gonçalves De Sousa ◽  
Alex Silva Da Cruz ◽  
Aparecido Divino Da Cruz

The objective of the study was to carry out, with the aid of Scopus®️, a scientometric analysis of Loop Mediated Isothermal Amplification Assay (LAMP) applied to farm animals. The research has considered articles from January 2000 to December 2019 and only open or closed access articles published in English. The bibliometric matrices were run through RStudio, applying Biblioshiny as a web interface to Bibliometrix resources for R environment. Later, several bibliometric data were collected with the aid of Bibliometrix, most of which were converted into graphs using Microsoft Excel®️. The scientometric analysis base of the current study was composed by 438 articles from 504 researched in the Scopus®️. Of the 438 articles analyzed, it stands out as results: 1) the years of 2015 (11,4%) and 2019 (11,4%) had equally the highest number of publications in the area; 2) Journal of Virological Methods (12,5%) ranked first in the ranking of journals according to total articles published; 3) China (49,8%), Japan (12,7%) and India (7,1%) have been countries of more published articles; 4) most articles applied the assay to detect microorganisms affecting the farm animals; and, 5) together, the animal groups fish, bovine, poultry, and swine corresponded to 2/3 (71,1%) of the animals used in scientific research using the LAMP method. With all these results, it is concluded that the scientometric analysis showed an overview of the information in the articles about LAMP applied to farm animals.


Author(s):  
Yufei Chen ◽  
Hao Li ◽  
Liu Yang ◽  
Lei Wang ◽  
Ruyi Sun ◽  
...  

Botulinum neurotoxins are considered as one of the most potent toxins and are produced by Clostridium botulinum. It is crucial to have a rapid and sensitive method to detect the bacterium Clostridium botulinum in food. In this study, a rapid detection assay of C. botulinum in food using loop-mediated isothermal amplification (LAMP) technology was developed. The optimal primers were identified among three sets of primers designed specifically based on the partial ntnh gene encoding nontoxic-nonhaemagglutinin (NTNH) for rapid detection of the target DNA in plasmids. The optimal temperature and reaction time of the LAMP assay were determined to be 64 °C and 60 min, respectively. The chemical kit could be assembled based on these optimized reaction conditions for quick, initial high-throughput screening of C. botulinum in food samples. The established LAMP assay showed high specificity and sensitivity in detecting the target DNA with a limit of 0.0001 pg/ul (i.e., ten times more sensitive than that of the PCR method) and an accuracy rate of 100%. This study demonstrated a potentially rapid, cost-effective, and easy-operating method to detect C. botulinum in food and clinical samples based on LAMP technology.


Author(s):  
Johannes Köck ◽  
Christoph Gottschalk ◽  
Sebastian Ulrich ◽  
Karin Schwaiger ◽  
Manfred Gareis ◽  
...  

AbstractCytotoxic macrocyclic trichothecenes such as satratoxins are produced by chemotype S strains of Stachybotrys chartarum. Diseases such as stachybotryotoxicosis in animals and the sick building syndrome as a multifactorial disease complex in humans have been associated with this mold and its toxins. Less toxic non-chemotype S strains of S. chartarum are morphologically indistinguishable from chemotype S strains, which results in uncertainties in hazard characterization of isolates. To selectively identify macrocyclic trichothecene producing S. chartarum isolates, a set of sat14 gene-specific primers was designed and applied in a loop-mediated isothermal amplification (LAMP) assay using neutral red for visual signal detection. The assay was highly specific for S. chartarum strains of the macrocyclic trichothecene producing chemotype and showed no cross-reaction with non-macrocyclic trichothecene producing S. chartarum strains or 152 strains of 131 other fungal species. The assay’s detection limit was 0.635 pg/rxn (picogram per reaction) with a reaction time of 60 min. Its high specificity and sensitivity as well as the cost-saving properties make the new assay an interesting and powerful diagnostic tool for easy and rapid testing.


2021 ◽  
Author(s):  
Anna Shuryaeva ◽  
Tatyana Malova ◽  
Anna Tolokonceva ◽  
Sofia Karseka ◽  
Ekaterina Davydova ◽  
...  

Background: Different species of Campylobacter are the most common causes of bacterial gastroenteritis. There are many methods to detect the presence of Campylobacter, including PCR, but it takes about 5-6 hours. Using loop-mediated amplification assay allowed reducing the time of detection and simplifying the procedure at all. Aims: To develop a loop-mediated isothermal amplification assay (LAMP) with fluorescent probe for the diagnosis of campylobacteriosis. Methods: Stool suspensions were prepared and bacterial fractions were separated as in methodological recommendation of Central Research Institute of Epidemiology described. DNA was extracted using AmpliTest RIBO-prep (FSBI SPC FMBA, Russian Federation) according to the manufacturers instruction and detected with AmpliSens OKI-screen-FL" (FBIS CRIE, Russian Federation). Primers and probes were selected in 16S rDNA gene region. Analytical specificity was confirmed on bacterial cultures, analytical sensitivity was assessed using a recombinant plasmid containing the target Campylobacter DNA sequence fragment. LAMP amplification was performed at 65 C for 30 min. Results: An assay for the detection of Campylobacter spp. based on loop-mediated isothermal amplification is developed, the reaction time does not exceed 30 minutes. The analytical sensitivity of the developed technique is comparable to the real-time PCR and is equal to 103 copies / ml, the analytical specificity is 100%. The evaluation of 127 clinical samples, previously characterized by the commercial kit "AmpliSens OKI-screen-FL" (FBIS CRIE, Russian Federation), showed high diagnostic specificity and sensitivity of the developed LAMP-method. No false positive results were found, 108 samples were negative by LAMP and PCR. Campylobacter spp. DNA was detected by the LAMP method in 18 out of 19 PCR-positive samples. One discordant LAMP negative sample can be attributed to the low bacterial load of Campylobacter spp. for a given sample. Conclusions: A method for the rapid detection of Campylobacter spp. loop-mediated isothermal amplification is developed, and its high analytical and diagnostic characteristics have been shown experimentally. Keywords: Gastrointestinal infections, molecular diagnostics, rapid diagnostics, Loop-Mediated Isothermal Amplification (LAMP), Campylobacter spp.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1048
Author(s):  
Domenico Rizzo ◽  
Salvatore Moricca ◽  
Matteo Bracalini ◽  
Alessandra Benigno ◽  
Umberto Bernardo ◽  
...  

The walnut twig beetle Pityophthorus juglandis is a phloem-boring bark beetle responsible, in association with the ascomycete Geosmithia morbida, for the Thousand Cankers Disease (TCD) of walnut trees. The recent finding of TCD in Europe prompted the development of effective diagnostic protocols for the early detection of members of this insect/fungus complex. Here we report the development of a highly efficient, low-cost, and rapid method for detecting the beetle, or even just its biological traces, from environmental samples: the loop-mediated isothermal amplification (LAMP) assay. The method, designed on the 28S ribosomal RNA gene, showed high specificity and sensitivity, with no cross reactivity to other bark beetles and wood-boring insects. The test was successful even with very small amounts of the target insect’s nucleic acid, with limit values of 0.64 pg/µL and 3.2 pg/µL for WTB adults and frass, respectively. A comparison of the method (both in real time and visual) with conventional PCR did not display significant differences in terms of LoD. This LAMP protocol will enable quick, low-cost, and early detection of P. juglandis in areas with new infestations and for phytosanitary inspections at vulnerable sites (e.g., seaports, airports, loading stations, storage facilities, and wood processing companies).


Sign in / Sign up

Export Citation Format

Share Document