scholarly journals Design and Economic Analysis of a Heating/Absorption Cooling System Operating with Municipal Solid Waste Digester: A Case Study of Gazi University

Author(s):  
Gökhan Coşar ◽  
Mirparham Pooyanfar ◽  
Ehsan Amirabedin ◽  
Hüseyin Topal

Abstract Recovering energy from municipal solid waste (MSW) is one of the most important issues of energy management in developed countries. This raises even more interest as world fossil fuel reserves diminish and fuel prices rise. Being one of main processes of waste disposal, anaerobic digestion can be used as a means to reduce fossil fuel and electricity consumption as well as reducing emissions. With growing demand for cooling in Turkey, especially during warm seasons and considering the energy costs, utilizing heat-driven absorption cooling systems coupled with an anaerobic digester for local cooling purposes is a potentially interesting alternative for electricity driven compression cooling. The aim of this article is to study the viability of utilizing biogas obtained from MSW anaerobic digestion as the main fuel for heating facilities of Gazi University, Turkey and also the energy source for an absorption cooling system designed for the central library of the aforementioned campus. The results prove that the suggested system is sustainably and financially appealing and has the potential to replace the conventional electricity driven cooling systems with a reasonable net present worth; moreover, it can notably reduce carbon dioxide emissions.

2019 ◽  
Vol 103 ◽  
pp. 01001
Author(s):  
Jakub Kuś ◽  
Kyrylo Rudykh ◽  
Marcin Kobas ◽  
Maciej Żołądek ◽  
Szymon Sendłak ◽  
...  

Refrigeration systems are necessary for people living in hot climates. A majority of tropical and subtropical countries uses electrical power as a source of cooling. During the seasons of high ambient temperature there is a significant cooling load due to increased level of energy consumption. Cooling systems are therefore necessary in African countries in order to keep medications and food in safe conditions. Furthermore, there is a power shortage crisis due to the high demand for cooling. TRNSYS software allows to simulate a complete solar-powered absorption cooling system. A model used in an experiment includes PV modules making it advantageous over a conventional cooling system. PV modules of assumed area are sufficient to maintain the temperature inside cooling device below 6°C over the whole year.


2020 ◽  
Vol 38 (6) ◽  
pp. 2521-2540
Author(s):  
Juliana Isabel Saucedo Velázquez ◽  
Wilfrido Rivera Gómez Franco ◽  
Efraín Gómez-Arias ◽  
Geydy Gutiérrez Urueta

Conventional cooling systems consume a high percentage of the world’s total electricity generation. Because absorption cooling systems can be mainly operated with thermal energy, they can be used to reduce such percentage. In the present paper, an analysis is carried out to determine the cooling potential that can be obtained from a geothermal well in a location of Mexico by using a single-stage absorption cooling system. The analysis has been carried out taking into account the desired cooling temperature, the ambient temperature, and the temperatures at different depths of the wells for a typical day of every season of the year. The results showed that, for a fixed generation temperature, a maximum cooling potential as big as 71,594 GW, 70,649 GW, 71,164 GW, 70,859 GW could be obtained in Winter, Spring, Summer, and Autumn, respectively. Using the temperatures obtained from the well, for a fixed depth, the results show that higher values are obtained in spring and summer. From the analysis, it is clear that absorption systems operating with geothermal energy could be an excellent alternative to reduce the electricity consumed by conventional systems.


2021 ◽  
pp. 0734242X2110134
Author(s):  
Rasangika Thathsaranee Weligama Thuppahige ◽  
Sandhya Babel

The management of organic fraction of municipal solid waste (OFMSW) has continued to be a significant challenge in Sri Lanka. Anaerobic digestion is one of the management options of OFMSW. However, it generates unavoidable environmental impacts that should be addressed. The present study focuses to assess the environmental impact of a full-scale anaerobic digestion plant in Sri Lanka from a life cycle perspective. The inventory data were obtained from direct interviews and field measurements. Environmental burdens were found to be in terms of global warming potential (230 kg CO2 eq) ozone formation on human health (6.15 × 10−6 kg NO x eq), freshwater eutrophication (2.92 × 10−3 kg P eq), freshwater ecotoxicity (9.27 × 10−5 kg 1,4 DCB eq), human carcinogenic toxicity (3.98 × 10−4 kg 1,4 DCB eq), land use (1.32 × 10−4 m2 a crop eq) and water consumption (2.23 × 10−2 m3). The stratospheric ozone depletion, fine particulate matter formation, ozone formation on terrestrial ecosystems, terrestrial acidification, marine eutrophication, ecotoxicity (terrestrial and marine), human non-carcinogenic toxicity, mineral resource scarcity and fossil resource scarcity, were avoided due to electricity production. Results show that the direct gaseous emissions and digestate generation should be addressed in order to reduce the burdens from the anaerobic digestion plant. Finally, the results of the study could help in policy formation and decision-making in selecting future waste management systems in Sri Lanka.


2019 ◽  
Vol 11 (7) ◽  
pp. 3293-3301
Author(s):  
Mingyu Qian ◽  
Ye Zhou ◽  
Yixin Zhang ◽  
Zhenxin Wang ◽  
Ruihua Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document