scholarly journals The Impact of Parallel Energy Consumption on the District Heating Networks

2019 ◽  
Vol 23 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Eduard Latosov ◽  
Anna Volkova ◽  
Andres Siirde ◽  
Martin Thalfeldt ◽  
Jarek Kurnitski

Abstract The aim of this study is to evaluate and compare the impacts of heat recovery ventilation (HRV) and exhaust air heat pump (EAHP)-based solutions used in renovated buildings, which make it possible to reach performance class C in district heating (DH) area CO2 emissions, primary energy consumption and total energy costs for consumers. Evaluation is based on the methodology presented in the previous research paper [1]. Calculation results show that the use of EAHP has a negative impact on DH sustainability (heat losses in the DH network, DH heat price, reduced consumption of DH heat) and CO2 emissions related to energy delivery (heat and electricity) to consumers in the DH area. Positive aspects of the EAHP use include the fact that almost the same primary energy consumption level can be achieved with lesser (up to 7 %) annual costs (annual capital costs, DH heat costs and electricity costs) and lower initial investments (about 10 %). At the same time, every renovated building with EAHP will experience a negative impact on heat prices. In DH areas where almost all buildings are renovated with EAHP, cost savings are not as evident compared to buildings with HRV in DH areas where the use of parallel consumption solutions (EAHP) is minimized. It is reasonable to promote these renovation packages and solutions that benefit the building’s primary energy reduction, and also do not increase electric energy consumption (additional electric power generators are needed) and do not damage DH networks.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2538
Author(s):  
Praveen K. Cheekatamarla

Electrical and thermal loads of residential buildings present a unique opportunity for onsite power generation, and concomitant thermal energy generation, storage, and utilization, to decrease primary energy consumption and carbon dioxide intensity. This approach also improves resiliency and ability to address peak load burden effectively. Demand response programs and grid-interactive buildings are also essential to meet the energy needs of the 21st century while addressing climate impact. Given the significance of the scale of building energy consumption, this study investigates how cogeneration systems influence the primary energy consumption and carbon footprint in residential buildings. The impact of onsite power generation capacity, its electrical and thermal efficiency, and its cost, on total primary energy consumption, equivalent carbon dioxide emissions, operating expenditure, and, most importantly, thermal and electrical energy balance, is presented. The conditions at which a cogeneration approach loses its advantage as an energy efficient residential resource are identified as a function of electrical grid’s carbon footprint and primary energy efficiency. Compared to a heat pump heating system with a coefficient of performance (COP) of three, a 0.5 kW cogeneration system with 40% electrical efficiency is shown to lose its environmental benefit if the electrical grid’s carbon dioxide intensity falls below 0.4 kg CO2 per kWh electricity.


Author(s):  
Giorgia Baccino ◽  
Sara Cosentino ◽  
Elisa Guelpa ◽  
Adriano Sciacovelli ◽  
Vittorio Verda

One of the possible options for increasing the primary energy efficiency in district heating networks (DHNs) consists in flattening the thermal load diagram of the plants. This can be obtained through thermal storage. Storage generally allows one to increase the percentage of heat produced through CHP plants, waste heat or renewable systems. In this work, a numerical approach to analyze possible effects of distributed storage on the primary energy consumption is presented. This is based on the availability of detailed information about the thermal substations that connect the users to the DHN and a thermo-fluid dynamic model of the network. First, the analysis of a user of the district heating network is proposed in order to show the operating conditions of the heat exchanger in the thermal substation. Then the model of the network is presented and an application is proposed. This application allows us to discuss how the thermal request of a user modifies along the network because of the heat capacity of the network itself and mixing with the mass flow rates at different temperatures. Therefore, the thermal load that the plants should fulfill is different than the simple summation of the thermal request of the users. This tool allows one to link the thermal thermal request of the users to the thermal load of the plant and thus to the global primary energy consumption. It can be then applied to the evaluation of possible variation of thermal request profile of the users.


Author(s):  
Vittorio Verda ◽  
Elisa Guelpa ◽  
Giulia Barbero ◽  
Francesco Brundu ◽  
Andrea Acquaviva ◽  
...  

Thermal storage is very important in modern district heating networks in order to increase the share of waste heat and heat produced through renewable sources and cogeneration. The role of thermal storage is even more important in the case of Mediterranean areas, where climate and user behavior cause high peak requests in the morning. Nevertheless the installation of large storage volumes is not always feasible, especially in dense urban areas, therefore alternative options are investigated. One of these options is virtual storage. This consists in proposing changes to the thermal request profiles of some of the connected buildings, in order to obtain a peak shaving, which is an effect similar to that obtained using storage. To perform such approach there are two crucial elements: 1) an advanced ICT solution able provide real time information about the thermal request of the buildings and the thermodynamic conditions at the thermal substations; 2) a detailed thermo fluid-dynamic model of the district heating network able to simulate the temperature evolution along the network as the function of time. Using physical models it is possible to examine the effects, obtained by modifying the thermal request of users, on the total load of the thermal plants feeding the network. In particular, the model is applied to the analysis of changes in the start-up time of the buildings as well as possible pauses during the day. The start-up strategy should not produce significant effects on the building temperatures, so that acceptable comfort standard can be guaranteed. This is checked using a compact model of the buildings which parameters are obtained through data measured at the thermal substations. These changes in the request profiles usually involve a larger heat request. Nevertheless, peak shaving is accompanied by a reduction in heat generation of boilers and an increase in the thermal production of efficient systems, such as cogeneration units. This results in a significant reduction in the primary energy consumption. The goal of the analysis is to find the optimal start-up strategy in order to minimize the primary energy consumption at the thermal plants. An application to the Turin district heating network, which is the largest network in Italy, is presented. In particular, a subnetwork connecting the main transport network to about 100 buildings located in the central area of the town is considered. The analysis if performed in selected days where the optimization was conducted the day before on the basis of weather forecasts and then applied to the network. Despite the changes in the request profiles could be applied only to a limited number of buildings, the analysis show that the peak request can be reduced. Simulations performed considering the application of changes to a larger number of buildings show that reduction in the primary energy consumptions of the order of 1.25% can be obtained.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2394
Author(s):  
Georgeta Soava ◽  
Anca Mehedintu ◽  
Mihaela Sterpu ◽  
Eugenia Grecu

This paper analyzes the impact of the COVID-19 pandemic on economic growth and electricity consumption and investigates the hypothesis of the influence of this consumption on the gross domestic product (GDP) for Romania. Using time series on monthly electricity consumption and quarterly GDP and a multi-linear regression model, we performed an analysis of the evolution of these indicators for 2007–2020, a comparison between their behavior during the financial crisis vs. COVID-19 crisis, and empirically explore the relationships between GDP and electricity consumption or some of its components. The results of the analysis confirm that the shock of declining activity due to the COVID-19 pandemic had a severe negative impact on electric energy consumption and GDP in the first half of 2020, followed by a slight recovery. By using a linear regression model, long-term relationships between GDP and domestic and non-household electricity consumptions were found. The empirically estimated elasticity coefficients confirm the more important impact of non-household electricity consumption on GDP compared to the one of domestic electricity consumption. In the context of the COVID-19 pandemic, the results of the study could be useful for optimizing energy and economic growth policies at the national and European levels.


2011 ◽  
Vol 335-336 ◽  
pp. 1525-1529
Author(s):  
You Shan Gao ◽  
Ai Hong Wang

Abstract. This paper analyzed the primary energy consumption and emission of VOC, CO, NOx, SO2, PM, CO2, CH4, N2O during natural gas (NG) exploitation, it showing that more than 65% of VOC, NOX, SOx, CH4, CO2and greenhouse gas were discharged by electric energy and heat energy consumption during NG exploitation in all technique energy emission. Because of its important in NG exploitation, the consumption of electric energy and heat energy and its emissions produced should be reduced in order to reduce the emissions of NG exploitation.


2011 ◽  
Vol 301-303 ◽  
pp. 691-694
Author(s):  
Marut Khodpan ◽  
Sanguan Vongchavalitkul ◽  
Sanguan Patamatumakul

This study presents a risk management of the electric energy consumption in Nakhonratchasima industrial, case study in Thai Sanguan Cassava Starch Co.,Ltd. by AS/NZS 4360:2004 risk management standard. The objective of this study is to reduce the risk of electric energy consumption. Based on the risk inspection, the impact analysis of electric energy consumption is applied to manage an occasion risk. The analyzed risks are consumption risks and device risks. The consumption risks are load factor, the ratio of electric energy consumption to production unit and power consumption of each unbalance phase. The device risks are an efficiency of machinery and equipment, water pump usages, lighting system and air condition system. The results show that the use of machinery and equipment is the highest risk. Load factor, the ratio of electric energy consumption to production unit and water pump usages are ranged in medium risk level, while each phase of electric energy consumption, lighting system and air condition system are in low risk level. As a priority result, machine maintenance is an initial management to decrease the electric energy consumption. For reducing the electric energy demand, work schedule has been rearranged to enlarge the load factor. Operator controlling will reduce the ratio of electric energy consumption to production unit. The inverter, which is used to control motor in water pump usages, also reduce the risk of electric energy consumption. Finally, the low impact factor from lighting and air condition system are neglected.


2019 ◽  
Vol 18 (6) ◽  
pp. 490-494
Author(s):  
A. Czerepicki ◽  
A. Górka ◽  
J. Szustek

In the XXI century, when environmental awareness is growing and the impact of human activity on the planet is more and more noticeable, striving to minimize energy consumption seems to be a necessary direction in the development of technology. This development cannot take place without an initial understanding and describing the relationships influencing specific technologies. It also needs empirical verification of assumed theories. Modern trams play an important role in the functioning of urban transport. Being one of the oldest modes of environmentally friendly transport, in European capitals they are currently perceived as one of the most convenient means of transport. This is due, among other things, to the high velocity of transport along the route. The energy consumed by trams indirectly depends on the driving characteristics, i. e. speed, acceleration and stops on the route, which are also caused by stopping at traffic light controlled junctions. This paper presents the results of an experiment showing the change in the level of electric energy consumption depending on the applied method of traffic light control. This article presents the conditions influencing the power consumption in trams, describes the possible strategies of traffic lights control and their consequences for other traffic participants. The research was carried out in real conditions in everyday traffic, measuring the level of electricity consumption in case of both fixed-time and actuated signaling with full priority for trams. On the examined section there were both modern asynchronous-drive as well as traditional resistor-drive vehicles. The conclusions drawn from the survey confirm the validity of introducing modern solutions and may be useful for estimating investment costs.


2021 ◽  
Vol 939 (1) ◽  
pp. 012019
Author(s):  
S Khushiev ◽  
O Ishnazarov ◽  
J Izzatillaev ◽  
S Juraev ◽  
Sh Karakulov

Abstract The issue of assessing the impact of the main technological characteristics of wells on the power consumption of pumps is one of the important issues. Based on the analysis of the data obtained in the article, the electric energy consumption of the well pump device the rotational speed of the pump (co); the density of the solution (liquid) (p); the pressure generated by the pump (H); the performance of the pump aggregate (q); depth of the well (H); hydrodynamic resistance (dp); Also, on the basis of the STATISTICA program, the calculation work is carried out, the binding function of the pumps is determined to what extent the factor affects the electricity consumption, and is described in the Pareto diagram.


2019 ◽  
Author(s):  
Tedi Ahmad Bahtiar ◽  
Amalia Nurjannah ◽  
Maryoko Hadi

Until 2016, fossil fuels as primary energy are included in the top three most widely used. The process of combustion of fossil fuels causes the release of tremendous amounts of carbon to the atmosphere. In the atmosphere, carbon turns into carbon dioxide (CO2) or often called greenhouse gas. Greenhouse gas has a negative impact on the environment: direct effects like acid rains, and indirect effects like global warming. In Indonesia, the buildings used 37.8 percent of the total national energy consumption and are directly responsible for 37.8 percent of CO2 emission. This study aims to discuss the impact of reducing energy consumption used by the household on the risk of greenhouse gases. A computer simulation was used to calculate energy consumption in buildings. A conversion method from building energy consumption to the amount of CO2 emission was used to determine the level of reduction of greenhouse gas risk. Some parameters were evaluated, such as building’s material (e.g., roof, wall) and building geometry. It was found that the energy consumption savings were around 66.1 percent and operational CO2 savings were obtained 923 kg/year.


Sign in / Sign up

Export Citation Format

Share Document