scholarly journals CO and HC Emissions Reduction from Spark Ignition Engine by Chemical Catalyzer Part i Preliminary Test Results.(Dept.M)

2021 ◽  
Vol 14 (2) ◽  
pp. 119-129
Author(s):  
A. Desoky
2020 ◽  
Vol 24 (1) ◽  
pp. 72-87 ◽  
Author(s):  
Sara Tayari ◽  
Reza Abedi ◽  
Ali Abedi

AbstractMicroalgae have been mentioned as a promising feedstock for biodiesel production. In this study, microalgae Chlorella vulgaris (MCV) was cultivated in a bioreactor with wastewater. After biodiesel production from MCV oil via transesterification reaction, chemical and physical properties of MCV methyl ester were evaluated with regular diesel and ASTM standard. Besides, engine performance and exhaust emissions of CI engine fuelled with the blends of diesel-biodiesel were measured. The GC-MS analysis showed that oleic and linoleic acids were the main fatty acid compounds in the MCV methyl ester. Engine test results revealed that the use of biodiesel had led to a major decrease in CO and HC emissions and a modest reduction in CO2 emissions, whereas there was a minor increase in NOx emissions. Furthermore, there was a slight decrease in the engine power and torque while a modest increase in brake specific fuel consumption which are acceptable due to exhaust emissions reduction. The experimental results illustrate considerable capabilities of applied MVC biodiesel as an alternative fuel in diesel engines to diminish the emissions.


2021 ◽  
Vol 11 (4) ◽  
pp. 1441
Author(s):  
Farhad Salek ◽  
Meisam Babaie ◽  
Amin Shakeri ◽  
Seyed Vahid Hosseini ◽  
Timothy Bodisco ◽  
...  

This study aims to investigate the effect of the port injection of ammonia on performance, knock and NOx emission across a range of engine speeds in a gasoline/ethanol dual-fuel engine. An experimentally validated numerical model of a naturally aspirated spark-ignition (SI) engine was developed in AVL BOOST for the purpose of this investigation. The vibe two zone combustion model, which is widely used for the mathematical modeling of spark-ignition engines is employed for the numerical analysis of the combustion process. A significant reduction of ~50% in NOx emissions was observed across the engine speed range. However, the port injection of ammonia imposed some negative impacts on engine equivalent BSFC, CO and HC emissions, increasing these parameters by 3%, 30% and 21%, respectively, at the 10% ammonia injection ratio. Additionally, the minimum octane number of primary fuel required to prevent knock was reduced by up to 3.6% by adding ammonia between 5 and 10%. All in all, the injection of ammonia inside a bio-fueled engine could make it robust and produce less NOx, while having some undesirable effects on BSFC, CO and HC emissions.


Author(s):  
Michael Marr ◽  
James S. Wallace ◽  
Larry Pershin ◽  
Sanjeev Chandra ◽  
Javad Mostaghimi

A novel metal-based thermal barrier coating was tested in a spark-ignition engine. The coating was applied to the surface of aluminum plugs and exposed to in-cylinder conditions through ports in the cylinder wall. Temperatures were measured directly behind the coating and within the plug 3 and 11 mm from the surface. In-cylinder pressures were measured and analyzed to identify and quantify knock. Test results suggest the coating does not significantly reduce overall heat transfer, but it does reduce the magnitude of temperature fluctuations at the substrate surface. It was found that heat transfer can be reduced by reducing the surface roughness of the coating. The presence of the coating did not promote knock.


Author(s):  
Michael A. Marr ◽  
James S. Wallace ◽  
Larry Pershin ◽  
Sanjeev Chandra ◽  
Javad Mostaghimi

A novel metal-based thermal barrier coating was tested in a spark-ignition engine. The coating was applied to the surface of aluminum plugs and exposed to in-cylinder conditions through ports in the cylinder wall. Temperatures were measured directly behind the coating and within the plug 3 and 11 mm from the surface. In-cylinder pressures were measured and analyzed to identify and quantify knock. Test results suggest the coating does not significantly reduce overall heat transfer, but it does reduce the magnitude of temperature fluctuations at the substrate surface. It was found that heat transfer can be reduced by reducing the surface roughness of the coating. The presence of the coating did not promote knock.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1835-1839
Author(s):  
Wei Bo Shi ◽  
Xiu Min Yu

This paper reviews and summarizes recent developments in hydrogen and gasoline mixtures powered engine research. According to the hydrogen and gasoline injection location, engine can be divided into three categories: hydrogen intake port injection, gasoline direct injection; Hydrogen direct injection, gasoline intake port injection; hydrogen and gasoline intake port injection. Different gasoline and hydrogen injection location determines the engines have different advantages. Follow an overview of spark ignition engine using hydrogen and gasoline mixtures, general trade-off when operating engine on hydrogen and gasoline mixtures are analyzed and highlights regarding accomplishments in efficiency improvement and emissions reduction are presented. These include estimates of efficiency potential of hydrogen and gasoline engines, fuel economy and emissions.


2015 ◽  
Vol 19 (6) ◽  
pp. 1959-1966
Author(s):  
Zuhair Obeid ◽  
Alexandru Cernat ◽  
Constantin Pana ◽  
Niculae Negurescu

In the actual content of pollution regulations for the automotives, the use of alternative fuels becomes a priority of the thermal engine scientific research domain. From this point of view bioethanol can represents a viable alternative fuel for spark ignition engines offering the perspective of pollutant emissions reduction and combustion improvement. The paper presents results of the experimental investigations of a turbo-supercharged spark ignition engine (developed from a natural admission spark ignition engine fuelled with gasoline) fuelled with bioethanol-gasoline blends. The engine is equipped with a turbocharger for low pressure supercharging, up till 1.4 bar. An correlation between air supercharging pressure-compression ratio-dosage-spark ignition timing-brake power is establish to avoid knocking phenomena at the engine operate regime of full load and 3000 min-1. The influences of the bioethanol on pollutant emissions level are presented.


Author(s):  
E Sher ◽  
Y Hacohen

The effect of the amount of hydrogen addition on the fuel consumption and emission of a spark ignition engine has been studied. Dynamometer test results for a wide range of engine speeds, engine loads, equivalent ratio and hydrogen enrichment under steady state operation are presented, and the engine requirements for minimum b.s.f.c. are specified. A detailed model to simulate a four-stroke cycle of a spark ignition engine fuelled with hydrogen-enriched gasoline was used to predict the optimal amount of hydrogen supplement as well as the corresponding minimum best torque (MBT) optimal throttle position and emissions levels of CO and NOx. It has been shown that a significant reduction in the b.s.f.c, in the order of 20 per cent, is achieved with hydrogen-enriched gasoline for a hydrogen-fuel mass ratio of 6 per cent and equivalence ratio of 0.65. A very smooth operation has been observed under these conditions. The energy conversion gain is prominent at partial loads and depends only to a limited extent on the engine speed.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1824 ◽  
Author(s):  
Süleyman Şimşek ◽  
Hasan Saygın ◽  
Bülent Özdalyan

In this study, the effects of the use of improved fusel oil on engine performance and on exhaust emissions in a spark-ignition engine were investigated experimentally in consideration of the water, gum, and moisture content at high compression ratios according to TS EN 228 standards. In the study, a four-stroke, single-cylinder, air-cooled, spark plug ignition engine with an 8/1 compression ratio was used at three different compression ratios (8/1, 8.5/1, 9.12/1). Experiments were performed for six different ratios of fuel blends (F0, F10, F20, F30, F40, and F50) at a constant speed and different loads. The data obtained from the experiments were compared with the original operating parameters of the engine while using gasoline. According to the test results, the optimal engine performance was at a 9.12/1 compression ratio and with a F30 fuel blend. With the increase from an 8/1 to 9.12/1 compression ratio for the F30 fuel blend, the overall efficiency increased by 6.91%, and the specific fuel consumption decreased by 2.35%. The effect of the optimum fusel blend on the emissions was also examined and CO emissions were reduced by 36.82%, HC emissions were reduced by 23.07%, and NOx emissions were reduced by 15.42%, while CO2 emissions were increased by 13.88%.


Sign in / Sign up

Export Citation Format

Share Document