scholarly journals Role of temperature in the numerical analysis of CaO under high pressure

2010 ◽  
Vol 8 (1) ◽  
pp. 126-133 ◽  
Author(s):  
Purvee Bhardwaj ◽  
Sadhna Singh

AbstractIn this paper we focus on the elastic and thermodynamic properties of the B1 phase of CaO by using the modified TBP model, including the role of temperature. We have successfully obtained the phase transition pressure and volume change at different temperatures. In addition elastic constants and bulk modulus of B1 phase of CaO at different temperatures are discussed. Our results are comparable with the previous ones at high temperatures and pressures. The thermodynamical properties of the B1 phase of CaO are also predicted.

Author(s):  
Ashok K. Ahirwar ◽  
Mahendra Aynyas ◽  
Sankar P. Sanyal

The crystal structural, mechanical and thermal properties of UXLa1-XS compound with different concentrations (x= 0.00, 0.08 and 0.40) are investigated using modified inter-ionic potential theory (MIPT), which parametrically includes the effect of coulomb screening by the delocalized f-electrons. Our calculated values of phase transition pressure, bulk modulus and volume change are agree well with the theoretical and experimental data. We have also calculated the second order elastic constants and Debye temperature of these three concentrations.


Open Physics ◽  
2008 ◽  
Vol 6 (2) ◽  
Author(s):  
Purvee Bhardwaj ◽  
Sadhna Singh ◽  
Neeraj Gaur

AbstractIn the present paper we have investigated the high-pressure, structural phase transition of Barium chalcogenides (BaO, BaSe and BaTe) using a three-body interaction potential (MTBIP) approach, modified by incorporating covalency effects. Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses obtained from TBIP show a reasonably good agreement with experimental data. Here, the transition pressure, NaCl-CsCl structure increases with decreasing cation-to-anion radii ratio. In addition, the elastic constants and their combinations with pressure are also reported. It is found that TBP incorporating a covalency effect may predict the phase transition pressure, the elastic constants and the pressure derivatives of other chalcogenides as well.


2010 ◽  
Vol 24 (10) ◽  
pp. 1235-1244 ◽  
Author(s):  
MINA TALATI ◽  
PRAFULLA K. JHA

The high-pressure induced structural phase transitions and pressure induced elastic and anharmonic behavior of boron compounds viz. BN, BP, and BAs have been investigated using an inter-ionic potential approach based on charge transfer effect. These compounds go to NaCl phase (B1) under pressure from zinc blende phase (B3). The variations of second-order elastic constants and their combinations follow a systematic trend with pressure, identical to that observed in other compounds of zinc blende structure family. Shear stiffness constants decrease with increasing pressure up to phase transition pressure. The bulk moduli of these compounds are in reasonably good agreement with other theoretical and experimental data. The values of phase transition pressure of these compounds obtained by using the present approach are also in good agreement with those predicted by using the pseudo potential approach. The present approach has also succeeded in predicting the Born and relative stability criterion for stable zinc blende phase of these compounds. We also present a set of third-order elastic constants and pressure derivatives of second-order elastic constants for boron compounds.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 3058-3070
Author(s):  
Yu Zhou ◽  
Lan-Ting Shi ◽  
A-Kun Liang ◽  
Zhao-Yi Zeng ◽  
Xiang-Rong Chen ◽  
...  

The structures, phase transition, mechanical stability, electronic structures, and thermodynamic properties of lanthanide phosphates (LaP and LaAs) are studied in the pressure range of 0 to 100 GPa by first principles.


2016 ◽  
Vol 850 ◽  
pp. 354-361
Author(s):  
Ping Ying Tang ◽  
Guo Hua Huang ◽  
Qing Lian Xie ◽  
Jin Li Huang

Phase stability and elastic properties of seven one dimensional long period structures (1D-LPSs) of Al3Ti under high pressure have been systematically investigated by first-principles calculations. The enthalpy differences indicate that Al3Ti will undergo a phase transition from 1D-LPSs to L12 structure at high pressure. With increase of antiphase boundary period parameter M’, the enthalpy initially decreases and then increases, and the enthalpy for D023 is the smallest. Oppositely, the phase transition pressure firstly increases and then decreases, and the maximum is for D023. The elastic constants and elastic moduli B, G and E increase monotonically with increase of pressure, and the corresponding second-order polynomial fits are also obtained. Interestingly, the pressure dependence of Poisson’s ratio show similar tendency with that of B/G ratio. Both the B/G ratios and the Cauchy pressures reveal that these 1D-LPSs exhibit brittleness at high pressure.


Sign in / Sign up

Export Citation Format

Share Document