scholarly journals A proteomic analysis of the effect of mapk pathway activation on l-glutamate-induced neuronal cell death

Author(s):  
Sunghyun Kang ◽  
Eun Kim ◽  
Young Bahn ◽  
Jin Chung ◽  
Do Lee ◽  
...  

AbstractOxidative stress has been implicated in the pathogenesis of neuronal degenerative diseases. It is also widely known that oxidative stress induces mitogen-activated protein kinase (MAPK) signaling cascades. In this study, we used proteomic analysis to investigate the role of the MAPK pathway in oxidative stress-induced neuronal cell death. The results demonstrated that several proteins, including eukaryotic translation elongation factor 2 (eEF2) and enolase I, showed a differential expression pattern during the neuronal cell death process, and this was MAPK pathway dependent. Several chaperone and cytoskeletal proteins including heat shock protein 70, calreticulin, vimentin, prolyl 4-hydroxylase β polypeptide, and transgelin 2 were up-or down-regulated, despite their expressions not depending on the MAPK pathway. These findings strongly suggest that the expressions of proteins which play protective roles are independent of the MAPK pathway. On the other hand, eEF2 and enolase I may be the downstream targets of the MAPK pathway.

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1702
Author(s):  
Sereen Sandouka ◽  
Tawfeeq Shekh-Ahmad

Epilepsy is a chronic disease of the brain that affects over 65 million people worldwide. Acquired epilepsy is initiated by neurological insults, such as status epilepticus, which can result in the generation of ROS and induction of oxidative stress. Suppressing oxidative stress by upregulation of the transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) has been shown to be an effective strategy to increase endogenous antioxidant defences, including in brain diseases, and can ameliorate neuronal damage and seizure occurrence in epilepsy. Here, we aim to test the neuroprotective potential of a naturally occurring Nrf2 activator sulforaphane, in in vitro epileptiform activity model and a temporal lobe epilepsy rat model. Sulforaphane significantly decreased ROS generation during epileptiform activity, restored glutathione levels, and prevented seizure-like activity-induced neuronal cell death. When given to rats after 2 h of kainic acid-induced status epilepticus, sulforaphane significantly increased the expression of Nrf2 and related antioxidant genes, improved oxidative stress markers, and increased the total antioxidant capacity in both the plasma and hippocampus. In addition, sulforaphane significantly decreased status epilepticus-induced neuronal cell death. Our results demonstrate that Nrf2 activation following an insult to the brain exerts a neuroprotective effect by reducing neuronal death, increasing the antioxidant capacity, and thus may also modify epilepsy development.


2019 ◽  
Vol 43 (2) ◽  
pp. 326-334 ◽  
Author(s):  
Dong Hoi Kim ◽  
Dae Won Kim ◽  
Bo Hyun Jung ◽  
Jong Hun Lee ◽  
Heesu Lee ◽  
...  

Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 144 ◽  
Author(s):  
Chang-Hyun Park ◽  
Ji Hoon Song ◽  
Su-Nam Kim ◽  
Ji Hwan Lee ◽  
Hae-Jeung Lee ◽  
...  

In the central nervous system, glutamate is a major excitable neurotransmitter responsible for many cellular functions. However, excessive levels of glutamate induce neuronal cell death via oxidative stress during acute brain injuries as well as chronic neurodegenerative diseases. The present study was conducted to examine the effect of tetrahydrocurcumin (THC), a major secondary metabolite of curcumin, and its possible mechanism against glutamate-induced cell death. We prepared THC using curcumin isolated from Curcuma longa (turmeric) and demonstrated the protective effect of THC against glutamate-induced oxidative stress in HT22 cells. THC abrogated glutamate-induced HT22 cell death and showed a strong antioxidant effect. THC also significantly reduced intracellular calcium ion increased by glutamate. Additionally, THC significantly reduced the accumulation of intracellular oxidative stress induced by glutamate. Furthermore, THC significantly diminished apoptotic cell death indicated by annexin V-positive in HT22 cells. Western blot analysis indicated that the phosphorylation of mitogen-activated protein kinases including c-Jun N-terminal kinase, extracellular signal-related kinases 1/2, and p38 by glutamate was significantly diminished by treatment with THC. In conclusion, THC is a potent neuroprotectant against glutamate-induced neuronal cell death by inhibiting the accumulation of oxidative stress and phosphorylation of mitogen-activated protein kinases.


Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 867 ◽  
Author(s):  
Hyun Park ◽  
Jong Kang ◽  
Myung Lee

1-O-Hexyl-2,3,5-trimethylhydroquinone (HTHQ) has previously been found to have effective anti-oxidant and anti-lipid-peroxidative activity. We aimed to elucidate whether HTHQ can prevent dopaminergic neuronal cell death by investigating the effect on l-DOPA-induced cytotoxicity in PC12 cells. HTHQ protected from both l-DOPA-induced cell death and superoxide dismutase activity reduction. When assessing the effect of HTHQ on oxidative stress-related signaling pathways, HTHQ inhibited l-DOPA-induced phosphorylation of sustained extracellular signal-regulated kinases (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK1/2). HTHQ also normalized l-DOPA-reduced Bcl-2-associated death protein (Bad) phosphorylation and Bcl-2-associated X protein (Bax) expression, promoting cell survival. Taken together, HTHQ exhibits protective effects against l-DOPA-induced cell death through modulation of the ERK1/2-p38MAPK-JNK1/2-Bad-Bax signaling pathway in PC12 cells. These results suggest that HTHQ may show ameliorative effects against oxidative stress-induced dopaminergic neuronal cell death, although further studies in animal models of Parkinson’s disease are required to confirm this.


2004 ◽  
Vol 76 (5) ◽  
pp. 697-704 ◽  
Author(s):  
Krisztina Nagy ◽  
Bela Kis ◽  
Nishadi C. Rajapakse ◽  
Ferenc Bari ◽  
David W. Busija

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Yong-Juan Xin ◽  
Bo Yuan ◽  
Bin Yu ◽  
Yu-Qing Wang ◽  
Jia-Jia Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document