Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media

2011 ◽  
Vol 65 (6) ◽  
Author(s):  
Yu He ◽  
Cui Ma ◽  
Dong Xia ◽  
Liang Ding ◽  
Liang Li ◽  
...  

AbstractIonic liquid (IL) 1-ethyl-3-methylimidazolium dimethylphosphate ([Emim]DMP) was chosen as an environment-friendly solvent to enzymatically hydrolyze cellulose in situ. Under optimal reaction condition, 80.2 % of cellulose (10 mg mL−1) were converted to glucose in aqueous-IL-DMSO (φ r = 74: 25: 1) media at 55°C in 18 h. Finally, fermentability of the recovered hydrolyzates was evaluated using Saccharomyces cerevisiae which is able to ferment hydrolyzates efficiently, the ethanol production was 0.44 g g−1 of glucose within 24 h of the process. Such information is vital for the saccharification of more complex cellulose materials and for the fermentation of hydrolyzates into biofuel.

2017 ◽  
Vol 225 ◽  
pp. 191-198 ◽  
Author(s):  
Jose A. Pérez-Pimienta ◽  
Alejandra Vargas-Tah ◽  
Karla M. López-Ortega ◽  
Yessenia N. Medina-López ◽  
Jorge A. Mendoza-Pérez ◽  
...  

2013 ◽  
Vol 361-363 ◽  
pp. 339-342 ◽  
Author(s):  
Juan Juan Fei ◽  
Qiang Li ◽  
Yuan Yuan Feng ◽  
Geng Sheng Ji ◽  
Xu Ding Gu ◽  
...  

The work is to select biocompatible ionic liquid (IL) toward in situ saccharification of cellulose and investigating the effect of enzymatic saccharification with sodium alginate immobilized cellulase. The [Mmi [DM was selected for the ionic liquid treatment improved the yield of reducing sugars and the hydrolyzates could be efficiently fermented to ethanol. The yield of reducing sugar is 89.54% for 48h. In the in situ saccharification process, the yield of sugars were 84.52% and 86.72% with immobilized cellulase and free cellulase saccharification for 48h. Then the hydrolyzates could be fermented to ethanol withCandida shehatae. The yield of ethanol was 0.42g/g glucose within 24h.


2012 ◽  
Vol 450-451 ◽  
pp. 223-227 ◽  
Author(s):  
Hui Qun Yu ◽  
You Bin Mo ◽  
Yan Fang Liao ◽  
Hai Zhou ◽  
Zhi Peng He

The new process of 1-(3,4-dichloropheny)-3-methyl-pyrazolone-5-one (34DCPMP) synthesis had been discovered, which using 3,4-dichloro phenylhydrazine hydrochloride(DCPH) and ethyl acetoacetate as the raw material , The product was obtained by the route during cyclization in aqueous medium. The structure of products was confirmed by 1HNMR, 13CNMR and IR. The effects of factors on the yield of products were investigated. It was found that the yield of 34DCPMP can reach 98.7% under the optimal reaction condition of n(34DCPH):n(ethyl acetoacetate) with 1:1.1, n(34DCPH):n(Na2SO3) with 1.3:1 at 80°C, and pH 7.5 for 3h. The chromatographic purity can be higher than 98.2%.


2013 ◽  
Vol 15 (2) ◽  
pp. 94-98 ◽  
Author(s):  
Shengdong Zhu ◽  
Pei Yu ◽  
Mingke Lei ◽  
Yanjie Tong ◽  
Lu Zheng ◽  
...  

Ionic liquid (IL) pretreatment of lignocellulosic materials has provided a new technical tool to improve lignocellulosic ethanol production. To evaluate the influence of the residual IL in the fermentable sugars from enzymatic hydrolysis of IL pretreatment of lignocellulosic materials on the subsequent ethanol fermentation, the toxicity of the IL 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) to Saccharomyces cerevisiae AY93161 was investigated. Firstly, the morphological structure, budding and metabolic activity of Saccharomyces cerevisiae AY93161 at different [BMIM]Cl concentrations were observed under an optical microscope. The results show that its single cell morphology remained unchanged at all [BMIM]Cl concentrations, but its reproduction rate by budding and its metabolic activity decreased with the [BMIM]Cl concentration increasing. The half effective concentration (EC50) and the half inhibition concentration (IC50) of [BMIM]Cl to Saccharomyces cerevisiae AY93161 were then measured using solid and liquid suspension culture and their value were 0.53 and 0.39 g.L-1 respectively. Finally, the influence of [BMIM]Cl on ethanol production was investigated. The results indicate that the [BMIM]Cl inhibited the growth and ethanol production of Saccharomyces cerevisiae AY93161. This toxicity study provides useful basic data for further development in lignocellulosic ethanol production by using IL technology and it also enriches the IL toxicity data.


2019 ◽  
Vol 8 (1) ◽  
pp. 846-855 ◽  
Author(s):  
Raziyeh Kheshtzar ◽  
Aydin Berenjian ◽  
Seyedeh-Masoumeh Taghizadeh ◽  
Younes Ghasemi ◽  
Ali Ghanbari Asad ◽  
...  

Abstract In the current study, the optimal reaction condition for fabrication of INPs by using pine tree (Pinus eldarica) leaf extract was developed. A fractional factorial design was utilized to screen the effective parameters in the green synthesis reaction, and central composite face design was employed to achieve the optimal reaction condition. Leaf extract and iron precursor concentrations were found to be the most effective parameters for the fabrication of INPs. Physicochemical characteristics of the obtained nanoparticles were evaluated by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), and derivative thermo gravimetric (DTG). The prepared particles were found to be zero-valent iron nanoparticles without any iron oxide impurities. Nanoparticles were spherical in shape with diameters ranging from 8 nm to 34 nm with a mean particle size of 18 nm. The fabricated particles were amorphous with a low magnetization value of 33 memu/g.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2131
Author(s):  
Delong Wang ◽  
Hui Shi

The reaction of isodehydracetic acid with amines was serendipitously found to afford β-enaminones in the presence of the coupling agent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). Under the optimal reaction condition, 23 examples of α-aminomethylene glutaconic anhydride were obtained at approximately 30−80% yields. This is a concise, operationally simple method to expediently synthesize a new type of β-enaminone-containing compound.


2015 ◽  
Vol 176 ◽  
pp. 169-174 ◽  
Author(s):  
Kazuaki Ninomiya ◽  
Asami Kohori ◽  
Mai Tatsumi ◽  
Koji Osawa ◽  
Takatsugu Endo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document