scholarly journals Determination of total petroleum hydrocarbons in soil from different locations using infrared spectrophotometry and gas chromatography

2012 ◽  
Vol 66 (8) ◽  
Author(s):  
Paula Paíga ◽  
Lurdes Mendes ◽  
José Albergaria ◽  
Cristina Delerue-Matos

AbstractTotal petroleum hydrocarbons (TPH) are important environmental contaminants which are toxic to human and environmental receptors. Several analytical methods have been used to quantify TPH levels in contaminated soils, specifically through infrared spectrometry (IR) and gas chromatography (GC). Despite being two of the most used techniques, some issues remain that have been inadequately studied: a) applicability of both techniques to soils contaminated with two distinct types of fuel (petrol and diesel), b) influence of the soil natural organic matter content on the results achieved by various analytical methods, and c) evaluation of the performance of both techniques in analyses of soils with different levels of contamination (presumably non-contaminated and potentially contaminated). The main objectives of this work were to answer these questions and to provide more complete information about the potentials and limitations of GC and IR techniques. The results led us to the following conclusions: a) IR analysis of soils contaminated with petrol is not suitable due to volatilisation losses, b) there is a significant influence of organic matter in IR analysis, and c) both techniques demonstrated the capacity to accurately quantify TPH in soils, irrespective of their contamination levels.

2008 ◽  
Vol 53 (No. 5) ◽  
pp. 225-238 ◽  
Author(s):  
N. Finžgar ◽  
P. Tlustoš ◽  
D. Leštan

Sequential extractions, metal uptake by <i>Taraxacum officinale</i>, Ruby&rsquo;s physiologically based extraction test (PBET) and toxicity characteristic leaching procedure (TCLP), were used to assess the risk of Pb and Zn in contaminated soils, and to determine relationships among soil characteristics, heavy metals soil fractionation, bioavailability and leachability. Regression analysis using linear and 2nd order polynomial models indicated relationships between Pb and Zn contamination and soil properties, although of small significance (<i>P</i> < 0.05). Statistically highly significant correlations (<i>P</i> < 0.001) were obtained using multiple regression analysis. A correlation between soil cation exchange capacity (CEC) and soil organic matter and clay content was expected. The proportion of Pb in the PBET intestinal phase correlated with total soil Pb and Pb bound to soil oxides and the organic matter fraction. The leachable Pb, extracted with TCLP, correlated with the Pb bound to carbonates and soil organic matter content (<i>R</i><sup>2</sup> = 69%). No highly significant correlations (<i>P</i> < 0.001) for Zn with soil properties or Zn fractionation were obtained using multiple regression.


2011 ◽  
Vol 52 (No. 12) ◽  
pp. 544-549 ◽  
Author(s):  
J. Pavlíčková ◽  
J. Zbíral ◽  
M. Smatanová ◽  
P. Habarta ◽  
P. Houserová ◽  
...  

A pot experiment focused on the study of factors influencing thallium transfer from contaminated soils into kale (green cabbage, Brassica oleracea L. var. acephala, variety Winterbor F1) was evaluated. Three different types of topsoils with naturally low content of thallium (heavy, medium and medium-light soil) were used for pot experiments. The soils were contaminated with thallium sulfate to achieve five levels of contamination (0, 0.52, 2.10, 4.20 and 5.88 mg/kg). There were six replicates for each combination (90 pots in the experiment). The first part of the experiment started in the year of contamination (2001) and continued in 2003. The soil samples and the samples of kale (leaves and stalks were sampled separately) were collected and analysed. Kale was found to be able to accumulate Tl without any influence on yield. The highest thallium concentration was found in the leaves of kale in the first year of the experiment and reached 326 mg/kg dry matter. Bioaccumulation factor (Biological Absorption Coefficient &ndash; BAC) was found to be over 80 during the first year of the experiment. In the third year the BAC was around 3 for the soil with the highest pH and the highest organic matter content but as high as 15 for an acid soil with the lowest content of organic matter and the lowest Cation Exchange Capacity (CEC) of soils. The content of thallium in the leaves of kale was found to be 7 to 10 times higher than in the stalks in the third year. In the first year this ratio was up to 18. From these findings it can be concluded that the ability of some plants of Brassicacea family, that are planted as common vegetables, to accumulate thallium is very high and can be a serious danger for food chains. Neutral soils high in CEC and organic matter are able to bind thallium more effectively than poor acid soils and the transfer of Tl into plants from these soils is substantially lower. The uptake of Tl from contaminated soils into kale can be very high and without any negative effect on the plant growth. The transfer of Tl into kale decreases with the time necessary to reach the equilibrium between the added Tl and the soil (ageing of a sample).


Author(s):  
C. O. Olukanni ◽  
A. A. Audu ◽  
M. Waziri

The aim of this research is to determine the insecticide and herbicide residues and their degradation products in Kura irrigation farmland soils. The analyses were carried out during the planting (before harvest) and after the harvesting periods. The insecticide residue analyses were undertaken using Gas chromatography-mass spectrometry (GC/MS) after extraction with a mixture of n-hexane and acetone (1:1) in a soxhlet extractor. The pH levels of the soil samples and the soil organic matter were also determined using standard analytical methods. The acidity and organic matter content of most of the soil samples increased slightly after harvest. The compounds detected as residues include 1-octadecene, 9-heptadecanone, (E)-3-eicosene, (Z)-5-nonadecene, heptadecane, 1-docosene, 1-nonadecene and 1-eicosene. Out of these residues, 1-octadecene and (E)-3-eicosene were detected during planting and after the harvesting periods, showing that they are the most persistent of the residues in the soil samples. The residues detected before harvest were totally different from the residues detected after harvest. This shows that the pesticides, after some time, degraded in the soil into completely different compounds and the total residues were detected in high percentages.


2003 ◽  
Vol 69 (6) ◽  
pp. 3085-3092 ◽  
Author(s):  
R. Margesin ◽  
D. Labb� ◽  
F. Schinner ◽  
C. W. Greer ◽  
L. G. Whyte

ABSTRACT Biodegradation of petroleum hydrocarbons in cold environments, including Alpine soils, is a result of indigenous cold-adapted microorganisms able to degrade these contaminants. In the present study, the prevalence of seven genotypes involved in the degradation of n-alkanes (Pseudomonas putida GPo1 alkB; Acinetobacter spp. alkM; Rhodococcus spp. alkB1, and Rhodococcus spp. alkB2), aromatic hydrocarbons (P. putida xylE), and polycyclic aromatic hydrocarbons (P. putida ndoB and Mycobacterium sp. strain PYR-1 nidA) was determined in 12 oil-contaminated (428 to 30,644 mg of total petroleum hydrocarbons [TPH]/kg of soil) and 8 pristine Alpine soils from Tyrol (Austria) by PCR hybridization analyses of total soil community DNA, using oligonucleotide primers and DNA probes specific for each genotype. The soils investigated were also analyzed for various physical, chemical, and microbiological parameters, and statistical correlations between all parameters were determined. Genotypes containing genes from gram-negative bacteria (P. putida alkB, xylE, and ndoB and Acinetobacter alkM) were detected to a significantly higher percentage in the contaminated (50 to 75%) than in the pristine (0 to 12.5%) soils, indicating that these organisms had been enriched in soils following contamination. There was a highly significant positive correlation (P < 0.001) between the level of contamination and the number of genotypes containing genes from P. putida and Acinetobacter sp. but no significant correlation between the TPH content and the number of genotypes containing genes from gram-positive bacteria (Rhodococcus alkB1 and alkB2 and Mycobacterium nidA). These genotypes were detected at a high frequency in both contaminated (41.7 to 75%) and pristine (37.5 to 50%) soils, indicating that they are already present in substantial numbers before a contamination event. No correlation was found between the prevalence of hydrocarbon-degradative genotypes and biological activities (respiration, fluorescein diacetate hydrolysis, lipase activity) or numbers of culturable hydrocarbon-degrading soil microorganisms; there also was no correlation between the numbers of hydrocarbon degraders and the contamination level. The measured biological activities showed significant positive correlation with each other, with the organic matter content, and partially with the TPH content and a significant negative correlation with the soil dry-mass content (P < 0.05 to 0.001).


2011 ◽  
Vol 76 (10) ◽  
pp. 1263-1275 ◽  
Author(s):  
Aleš Daňhel ◽  
Josino C. Moreira ◽  
Silvana Jacob ◽  
Jiří Barek

The method for monitoring of Glyphosate (GP) in soil samples containing different organic matter content based on differential pulse voltammetry at a hanging mercury drop electrode was developed to reach higher sample preparation efficiency, its repeatability and sufficient limits of detection. The soil samples with three different organic matter contents (evaluated as total organic carbon contents 30.7, 13.0 and 6.3 g kg–1) were tested. The decreasing content of organic matter resulted in a decreasing recoveries (86, 78 and 68%, respectively), with RSD around 10%. The GP derivatised to N-nitrosoglyphosate (NO-GP) can be determined using the adopted method with limits of detection around 2 ppm in the soil samples. This method might be further utilized for routine monitoring of the GP in soil samples during investigation of its effect on the soil biota.


2013 ◽  
Vol 178 ◽  
pp. 202-210 ◽  
Author(s):  
Cristina Becerra-Castro ◽  
Petra S. Kidd ◽  
Beatriz Rodríguez-Garrido ◽  
Carmela Monterroso ◽  
Paula Santos-Ucha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document