Estimation of tree biomass of Norway spruce forest in the Plešné Lake catchment, the Bohemian Forest

Biologia ◽  
2006 ◽  
Vol 61 (20) ◽  
Author(s):  
Miroslav Svoboda ◽  
Karel Matějka ◽  
Jiří Kopáček ◽  
Jiří Žaloudík

AbstractThis paper evaluates the total biomass and pools of major nutrients and ecologically important metals of the tree layer in the catchment of Plešné jezero (PL) in the Bohemian Forest (Šumava, Czech Republic), and compares them to analogous data on understory vegetation and soils. The results are based on field measurements and semi-automatic image analyses of aerial orthophotographs. The tree layer was relatively sparse with open canopy in some parts of the catchment. Stand density varied between 44 and 328 individuals per hectare. The catchment weighted mean total biomass of trees was 134 t ha−1 dry weight, of which needles, branches, roots, and stems represented 5%, 10%, 14%, and 71%, respectively. The stem wood and bark represented 67% and 4%, respectively, of the total tree biomass. The catchment weighted mean element pools were 568 and 3.0 mol m−2 (i.e., 68 and 0.42 t ha−1) for C and N, respectively. The other pools were 76 mmol P m−2, 602 mmol Ca m−2, 133 mmol Mg m−2, 39 mmol Na m−2, 347 mmol K m−2, 19 mmol Al m−2, 6.2 mmol Fe m−2, and 35 mmol Mn m−2. The element pools accumulated in the tree biomass represented from < 1% (Al, Fe) to 37% (C) of their total pools (soil + tree layer + understory vegetation) in the catchment. Pools of Ca and Mg in the tree biomass were similar to their exchangeable pools in the catchment soils, while those of K were 3 times higher. Nutrient (N, P, Ca, Mg, and K) and C pools in the tree biomass were 2–11 times higher than those in the understory vegetation, with the minimum for P and maximum for C.

Biologia ◽  
2006 ◽  
Vol 61 (20) ◽  
Author(s):  
Miroslav Svoboda ◽  
Karel Matějka ◽  
Jiří Kopáček

AbstractThis paper presents data on species composition, biomass, and element pools (C, N, P, Ca, Mg, Na, K, Al, Fe, Mn) of the understory vegetation of spruce forests in the catchments of lakes Čertovo jezero (CT) and Plešné jezero (PL) in the Bohemian Forest (Šumava, Czech Republic). Calamagrostis villosa was the most abundant species in the CT catchment, while Vaccinium myrtillus was the most abundant species in the PL catchment. The catchments weighted mean (CWM) of above-ground biomass of the understory vegetation was 288 and 723 g m−2 in the CT and PL catchments, respectively. The significant difference in the biomass between the catchments was caused by the much higher abundance of V. myrtillus in the PL catchment. The CWM of below-ground biomass of the fine roots was 491 and 483 g m−2 in the CT and PL catchments, respectively. The respective CWM element pools of biomass in the CT and PL catchments were: C (33 and 51 mol m−2), N (0.8 and 1.0 mol m−2), P (24 and 34 mmol m−2), Ca (53 and 113 mmol m−2), Mg (24 and 41mmol m−2), Na (3.7 and 6.5 mmol m−2), K (83 and 109 mmol m−2), Al (50 and 42 mmol m−2), Fe (13.3 and 7.3 mmol m−2), and Mn (4.2 and 8.8 mmol m−2).


1998 ◽  
Vol 28 (11) ◽  
pp. 1648-1659 ◽  
Author(s):  
Jonathan G Martin ◽  
Brian D Kloeppel ◽  
Tara L Schaefer ◽  
Darrin L Kimbler ◽  
Steven G McNulty

Allometric equations were developed for mature trees of 10 deciduous species (Acer rubrum L., Betula lenta L., Carya spp., Cornus florida L., Liriodendron tulipifera L., Oxydendrum arboreum (L.) DC., Quercus alba L., Quercus coccinea Muenchh., Quercus prinus L., and Quercus rubra L.) at the Coweeta Hydrologic Laboratory in western North Carolina, U.S.A. These equations included the following dependent variables: stem wood mass, stem bark mass, branch mass, total wood mass, foliage mass, total biomass, foliage area, stem surface area, sapwood volume, and total tree volume. High correlation coefficients (R2) were observed for all variables versus stem diameter, with the highest being for total tree biomass, which ranged from 0.981 for Oxydendrum arboreum to 0.999 for Quercus coccinea. Foliage area had the lowest R2 values, ranging from 0.555 for Quercus alba to 0.962 for Betula lenta. When all species were combined, correlation coefficients ranged from 0.822 for foliage area to 0.986 for total wood mass, total tree biomass, and total tree volume. Species with ring versus diffuse/semiring porous wood anatomy exhibited higher leaf area with a given cross-sectional sapwood area as well as lower total sapwood volume. Liriodendron tulipifera contained one of the highest foliar nitrogen concentrations and had consistently low branch, bark, sapwood, and heartwood nitrogen contents. For a tree diameter of 50 cm, Carya spp. exhibited the highest total nitrogen content whereas Liriodendron tulipifera exhibited the lowest.


2012 ◽  
Vol 9 (8) ◽  
pp. 3381-3403 ◽  
Author(s):  
T. R. Feldpausch ◽  
J. Lloyd ◽  
S. L. Lewis ◽  
R. J. W. Brienen ◽  
M. Gloor ◽  
...  

Abstract. Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (≤40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha−1 (range 6.6 to 112.4) to 8.0 Mg ha−1 (−2.5 to 23.0). For all plots, aboveground live biomass was −52.2 Mg ha−1 (−82.0 to −20.3 bootstrapped 95% CI), or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly more biomass in small diameter stems, which affects selection of the best height models to reduce uncertainty and biomass reductions due to H. After accounting for variation in H, total biomass per hectare is greatest in Australia, the Guiana Shield, Asia, central and east Africa, and lowest in east-central Amazonia, W. Africa, W. Amazonia, and the Brazilian Shield (descending order). Thus, if tropical forests span 1668 million km2 and store 285 Pg C (estimate including H), then applying our regional relationships implies that carbon storage is overestimated by 35 Pg C (31–39 bootstrapped 95% CI) if H is ignored, assuming that the sampled plots are an unbiased statistical representation of all tropical forest in terms of biomass and height factors. Our results show that tree H is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of tropical carbon stocks and emissions due to deforestation.


2020 ◽  
Vol 18 (1) ◽  
pp. 1093-1104
Author(s):  
Grzegorz Kulczycki ◽  
Elżbieta Sacała

AbstractThis study aimed to examine the influence of increasing doses of chromium (Cr) (26, 39, and 52 mg kg−1 soil) and elemental sulfur (S) (60 mg kg−1 soil) on growth, yield, and mineral nutrition in wheat and maize. Macro- and micronutrients and Cr concentrations were determined in the aboveground parts of plants. All examined doses of Cr caused a marked decrease in the fresh and dry weight of maize. Wheat was more tolerant than maize, and lower Cr doses caused a small but statistically significant increase in the total yield. Wheat accumulated more than twofold Cr than maize, and the concentrations increased with higher Cr concentrations in the soil. The application of S significantly improved the total biomass production and lowered the Cr content in both plants. Cr changed the mineral nutrition in both cereals, but the pattern of changes observed was not the same. Applying S alleviated some adverse effects caused by the Cr. Hence, it is concluded that the application of elemental S may be an effective strategy to reduce adverse effects in plants grown on soil contaminated by heavy metals, especially Cr.


2021 ◽  
Vol 325 (4) ◽  
pp. 502-515
Author(s):  
S.F. Komulaynen

The freshwater pearl mussel Margaritifera margaritifera (Linnaeus,1758) is endangered in Europe and is now listed in the Red Data Book of many countries and regions. The diet of the species in the Syskyänjoki River (a tributary of Lake Ladoga) has been studied. The contents of the intestine generally correspond to the composition of seston, and include organic detritus, filamentous and unicellular algae, fragments of invertebrates and macrophyte tissues mixed with silt and sand. The total biomass of the intestinal contents of varied from 0.8 to 30.6 mg per organism (absolutely dry weight). Margaritifera margaritifera consumes a wide range of particles, from 0.5 μm3 (bacteria and unicellular algae) to 200 000 μm3 (fragments of invertebrates and macrophyte tissues). About 90–95% (by volume) of the intestinal contents was consisted by fine organic detritus. The food composition did not differ significantly for mollusks of different sexes and size. In the intestinal contents, 63 taxa of algae were identified. The number of algal species in the content of one intestine varied from 3 to 17, with their abundance from 250 to 9560 cells per organism. The most abundant and constant in the contents of the intestines are unicellular algae. Diatoms are the most diverse, they make up 50.8% of the total number of species.


FLORESTA ◽  
2014 ◽  
Vol 44 (4) ◽  
pp. 637
Author(s):  
Karen C.P. da Costa ◽  
João B.S. Ferraz ◽  
Rodrigo P. Bastos ◽  
Tatiane Da S. Reis ◽  
Marciel J. Ferreira ◽  
...  

As estratégias de distribuição de biomassa e nutrientes utilizadas pelas espécies florestais podem refletir sua capacidade de sobrevivência em plantios sobre áreas degradadas. O objetivo deste estudo foi quantificar os estoques de biomassa e nutrientes nos compartimentos arbóreos de Parkia multijuga, Parkia nitida e Parkia pendula em plantios sobre área degradada em Manaus, AM. A biomassa foi determinada pelo método destrutivo em seis árvores de cada espécie, que foram compartimentadas em: folhas, galhos finos (Ø <10 cm), galhos grossos (Ø ≥10 cm), fuste, raízes médias (2 mm ≤ Ø <5 cm) e raízes grossas (Ø ≥5 cm). Aos quatro anos, Parkia multijuga exibiu 60% do total de biomassa nos compartimentos aéreos e 40% nos subterrâneos. Parkia nitida exibiu 84% nos compartimentos aéreos e apenas 16% nos subterrâneos. Parkia pendula exibiu 67% nos compartimentos aéreos e 33% nos subterrâneos. A ordem de acúmulo de macronutrientes nos compartimentos foi: N > Ca > K > Mg > P. O fato de Parkia multijuga adotar estratégias de alocação de biomassa e nutrientes que favorecerão seu desempenho sobre sítios com baixa disponibilidade de recursos sustenta sua indicação para a composição de programas de reflorestamento em áreas degradadas na Amazônia.Palavras-chave: Espécies florestais nativas; nutrição florestal; reflorestamento; restauração. AbstractBiomass and nutrients in three species of Parkia plantings on degraded area in Central Amazon. Biomass and nutrients partitioning strategies in tree species may reflect their ability to survive in plantations on degraded areas. The objective of this study was to investigate the content of biomass and nutrients in tree components of Parkia multijuga, Parkia nitida and Parkia pendula on plantings in degraded area in Manaus, AM. The biomass was determined by the harvest method in six trees of each species, which were subdivided into leaves, fine branches (Ø < 10 cm), coarse branches (Ø ≥10 cm), stem wood, medium roots (≤ 2 mm Ø < 5 cm ) and coarse roots (Ø ≥ 5 cm). At 4 years, Parkia multijuga allocated 60% of the total biomass to above-ground components and 40% to below-ground. Parkia nitida allocated 84% to above-ground and 16% to below-ground. Parkia pendula allocated 67% to above-ground components and 33% to below-ground. The order of the nutrient accumulation in tree compartments was: N > Ca > K > Mg > P. Parkia multijuga, by adopting better strategies of distribution of biomass and nutrients, it is a recommended species for reforestation programs on degraded sites in the Amazon.Keywords: Native forest species; forest nutrition; reforestation; restoration.


2009 ◽  
Vol 56 (3) ◽  
pp. 327-333 ◽  
Author(s):  
Miroslava Barančeková ◽  
Jarmila Krojerová-Prokešová ◽  
Pavel Šustr ◽  
Marco Heurich

2020 ◽  

<p>Purpose: To research the influence of different densities of Platycladus orientalis plantation on the allocation characteristics of carbon storage in the ecosystem, the density regulation experiment on the Pinus massoniana plantation with different densities was carried out to discuss the change of the carbon storage of the ecosystem. Method: The density regulation experiment was carried out using random block design along contour line. Through the estimation of tree layer biomass of single Pinus massoniana, the determination of the carbon storage in the tree layer of Pinus massoniana, the estimation of the understory shrub, the grass layer, and the wood layer, the determination of carbon storage in vegetation and litter layer under forest, the determination of organic carbon content and carbon storage in the sample, and the carbon storage of the plantation ecosystem of different stand density sample plots, the effects of stand density on biomass and carbon storage of Pinus massoniana plantation were analyzed. Results: The results of average carbon storage per unit area of Pinus massoniana plantation was different stand densities are 94.11 t/tm2 (1679 plants t/hm2), 79.06 t/tm2 (2250 plants / hm2), 73.32 t/tm2 (2800 plants / hm2). With the increase of stand density, the proportion of carbon storage in Pinus massoniana plantation decreased. This is because the larger the stand density, the more trees with small and medium diameter are grown in the Pinus massoniana plantation. The average diameter at breast height of the stand is very small, and the biomass of single tree decreases. The density is most beneficial to the improvement of the carbon storage of the tree layer. Conclusions: Density regulation promotes the accumulation of carbon storage of the Pinus massoniana plantation and increases the carbon storage of understory vegetation, litter, and soil layer.</p>


Sign in / Sign up

Export Citation Format

Share Document