The mineralogy and petrology of the Pahnavar Fe skarn, In the Eastern Azarbaijan, NW Iran

2012 ◽  
Vol 4 (4) ◽  
Author(s):  
Mir Mokhtari

AbstractThe Pahnavar calcic Fe-bearing skarn zone is located in the Eastern Azarbaijan (NW Iran). This skarn zone occurs along the contact between Upper Cretaceous impure carbonates and an Oligocene granodioritic batholith. The skarnification process can be categorized into two discrete stages: prograde and retrograde. The prograde stage began immediately after the initial emplacement of the granodioritic magma into the enclosing impure carbonate rocks. The effect of heat flow from the batholith caused the enclosing rocks to become isochemically marmorized in the pure limestone layers and bimetasomatized (skarnoids) in the impure clay-rich carbonates. Segregation and evolution of an aqueous phase from the magma that infiltrated to the marbles and skarnoids through fractures and micro-fractures took place during the emplacement of magma. The influx of Fe, Si and Mg from the granodiorite to the skarnoids and marbles led to the crystallization of anhydrous calc-silicates (garnet and pyroxene).The retrograde stage can be divided, in turn, into two distinct sub-stages. During earliest sub-stage, the previously formed skarn assemblages were affected by intense hydro-fracturing; in addition, Cu, Pb, Zn, along with H2S and CO2 were added. Consequently, hydrous calc-silicates (epidote and tremolite-actinolite), sulfides (pyrite, chalcopyrite, galena and sphalerite), oxides (magnetite and hematite) and carbonates (calcite) deposited the anhydrous calc-silicates. The late-retrograde sub-stage was due the incursion of colder oxidizing fluids into the skarn system, causing the alteration of the previously formed calc-silicate assemblages and the development of fine-grained aggregates of chlorite, illite, kaolinite, hematite and calcite.The lack of wollastonite in the mineral assemblage, along with the garnet-clinopyroxene paragenesis, suggests that the prograde stage formed under temperature and fO2 conditions of 430–550°C and 10−26–10−23, respectively.

2010 ◽  
Vol 61 (1) ◽  
pp. 29-38
Author(s):  
Damir Bucković ◽  
Maja Martinuš ◽  
Duje Kukoč ◽  
Blanka Tešović ◽  
Ivan Gušić

High-frequency sea-level changes recorded in deep-water carbonates of the Upper Cretaceous Dol Formation (island of Brač, Croatia)The upper part of the Middle Coniacian/Santonian-Middle Campanian deep-water Dol Formation of the island of Brač is composed of countless fine-grained allodapic intercalations deposited in an intraplatform trough. Within the studied section 13 beds can be distinguished, each defined by its lower part built up of dark grey limestone with abundance of branched, horizontally to subhorizontally oriented burrows, and the upper part, in which the light grey to white limestone contains larger burrows, rarely branched, showing no preferential orientation. The lower, dark grey, intensively bioturbated levels are interpreted as intervals formed during high-frequency sea-level highstands, while the upper, light grey-to-white levels are interpreted as intervals formed during the high-frequency sea-level lowstands. Cyclic alternation of these two intervals within the fine-grained allodapic beds is interpreted as the interaction between the amount of carbonate production on the platform margin and the periodicity and intensity of shedding and deposition in the distal part of toe-of-slope environment, which is governed by Milankovitch-band high frequency sea-level changes.


2013 ◽  
Vol 2 (9) ◽  
pp. 102-115
Author(s):  
Yousif Osman Mohammad ◽  
Nabaz Rashid Hama Aziz

The Pauza ultramafic body is part of Upper Cretaceous Ophiolitic massifs of the Zagros Suture Zone, NE Iraq. The present study reveals evidence of Ultra-high pressure (UHP), and deep mantle signature of these peridotites in the Zagros Suture Zone throughout the observation of backscattered images and micro analyses which have been performed on orthopyroxen crystals in lherzolite of Pauza ultramafic rocks.Theorthopyroxen shows abundant exsolution lamellae of coarse unevenly distributed clinopyroxene coupled with the submicron uniformly distributed needles of Cr-spinel. The observed clusters of Opx–Cpx–Spl represent the decompression products of pyrope-rich garnet produced as a result of the transition from ultra-high pressure garnet peridotite to low-pressure spinel peridotite (LP). Neoblastic olivine (Fo92 – 93) with abundant multi-form Cr- spinel inclusions occurs as a fine-grained aggregate around orthopyroxene, whereas coarse olivine (Fo90-91) free from chromian-spinel is found in matrix. The similarity of the Cr-spinel lamellae orientations in both olivine and orthopyroxene, moreover, the enrichments of both Cr and Fe3+ in the Cr-spinel inclusions in neoblastic olivine relative to Cr-spinel lamellae in orthopyroxene, suggest that spinel inclusions in olivine have been derived from former Cr-spinel lamellae in orthopyroxene. Neoblastic olivine is formed by reaction of silica-poor ascending melt and orthopyroxene. It is inferred that the olivines with multi-form spinel inclusions has been formed by incongruent melting of pre-existing spinel lamellae-rich orthopyroxene.


2002 ◽  
pp. 13-43 ◽  
Author(s):  
Dragoman Rabrenovic ◽  
Nebojsa Vasic ◽  
Jovanka Mitrovic-Petrovic ◽  
Vladan Radulovic ◽  
Barbara Radulovic ◽  
...  

Sedimentary rocks of the Upper Cretaceous basal series found at the village of Planinica, Western Serbia, are composed of thick coarse clastics and beds and intercalations of medium- to fine-grained clastics. The series lies transgressively over Jurassic serpentinite and peridotite, and under Upper Miocene marlstone and marly limestone. Sedimentary, petrographic, paleontological, and biostratigraphic characteristics of the basal series are described and its lithological members and their structural features are identified. From medium-grained sandy matrix in thick coarse clastics, two ammonite taxa, four brachiopod taxa (including the new taxa Orbirhynchia oweni and "Terebratula" n. gen. et sp.), and eleven echinoid taxa are described. The brachiopod species Kingena concinna Owen is used in dating the basal series as Middle Cenomanian, whereas limestone fragments in coarse clastics correspond to the Late Albian and Early Cenomanian.


1980 ◽  
Vol 17 (4) ◽  
pp. 473-486 ◽  
Author(s):  
Jean-Marie Konrad ◽  
Norbert R. Morgenstern

This study reveals that a freezing soil can be characterized by two parameters, the segregation-freezing temperature Ts and the overall permeability of the frozen fringe [Formula: see text]. During unsteady heat flow, the variation of these parameters with temperature produces rhythmic ice banding in fine-grained soils. At the onset of steady-state conditions, freezing tests conducted at a fixed warm end temperature showed that Ts was independent of the cold side step temperature. In addition, a model is presented that indicates how the overall permeability of the frozen fringe can be calculated without detailed measurements at the scale of the frozen fringe. It is also constant in the tests reported here.


1988 ◽  
Vol 100 ◽  
Author(s):  
D. H. Lowndes ◽  
S. J. Pennycook ◽  
R. F. Wood ◽  
G. E. Jellison ◽  
S. P. Withrow

ABSTRACTNanosecond resolution visible (633 nm) and near-infrared (1152 nm) reflectivity measurements have been used, together with transmission electronmicroscopy (TEM), to study pulsed KrF (248 nm) laser melting and subsequent solidification of thick (190–410 nm) amorphous (a) silicon layers. The measurements cover the entire laser energy density (El) range between the onset of melting (∼ 0.12 J/cm2) and the completion of epitaxial crystallization (∼1.1 J/cm2). Four distinct El-regimes of melting and solidification are found for the 410-nm thick a-Si layers. For El > 0.25 J/cm2, the time of formation, velocity and final depth of “explosively” propagating undercooled liquid layers were measured in specimens that had been uniformly implanted with Si, Ge, or Cu. TEM shows that the “fine-grained polycrystalline Si” produced by explosive crystallization (XC) actually contains large numbers of disk-shaped Si flakes that have largely amorphous centers and are visible only in plan view. The optical and TEM measurements suggest (1) that flakes are the crystallization events that initiate XC, and (2) that lateral heat flow (parallel to the sample surface) must be taken into account in order to understand flake formation. Results of new two-dimensional (2-D) model calculations of heat flow and solidification are presented. These calculations confirm the importance of 2-D heat flow and crystallite growth early in the solidification process. For 0.3 4 < El > 1.0 J/cm2, pronounced changes in both the shape and the duration of the reflectivity signals provide information about the growth of polycrystalline grains; this information can be correlated with post-irradiation plan and cross-section view TEM microstructural measurements.


Sign in / Sign up

Export Citation Format

Share Document