scholarly journals Can Material Pits in the Vicinity of a Polder Threaten its Safety?

2013 ◽  
Vol 21 (3) ◽  
pp. 11-18
Author(s):  
Danka Grambličková ◽  
Emília Bednárová ◽  
Marian Minárik

Abstract The frequent occurrence of floods recently has motivated discussions by experts on reviewing the safety of flood protection structures. The simulation of flood discharges belongs among transient flow tasks. Due to the randomness of the phenomenon, as well as the often unknown geological composition of the environment in which the flooding occurs, this question has become very complicated. The finite element method (FEM) is one of the methods for reviewing risk factors endangering the stability of hydraulic structures. In this article the application of FEM is mentioned in assessing the stability of the subsoil of the Borša polder in Slovakia.

2010 ◽  
Vol 18 (3) ◽  
pp. 7-13
Author(s):  
D. Grambličková ◽  
E. Bednárová ◽  
M. Minárik

Lessons learned and experience gained from the application of the FEM to solve transient flow filtration tasksThe frequent occurrence of floods in recent times has motivated discussions of experts who concentrate on reviewing the safety of flood dikes. Due to their line character and the often unknown composition of their bodies and subsoil, this task is very complicated. The proposed paper deals with some risks involving the safety of flood dikes and possibilities for their treatment in Slovakia. Attention is also paid to the lessons learned and experience gained from the application of the finite element method by solving the above-mentioned problems.


1987 ◽  
Vol 54 (1) ◽  
pp. 203-208 ◽  
Author(s):  
Bohou Xu ◽  
E. B. Hansen

The transient flow in the sector region bounded by two intersecting planes and a circular cylinder is determined in the Stokes approximation. The plane boundaries are assumed to be at rest while the cylinder is rotating with a constant velocity starting at t = 0. The problem is solved by means of three different methods, a finite element, a finite difference, and a boundary element method. The corresponding problem in which the constant velocity boundary condition on the cylinder is replaced by a condition of constant stress is also solved by means of the finite element method.


2011 ◽  
Vol 368-373 ◽  
pp. 234-240
Author(s):  
Shu Li Wang ◽  
Man Gen Mu ◽  
Ran Wang ◽  
Wen Bo Cui

This paper presents the results of a study on a joint slope deformation affecting the western slope of the GuangYang highway (YangQuan, China). Fieldwork identified the ongoing deformational process and assisted in defining its mechanisms, evolution and controlling factors. Here we discuss how to use limit equilibrium methods to calculate the behavior of slopes and to use the finite element analysis to evaluate the stability, displacements of slopes and soil-slope stabilization interaction. The finite element method with shear strength reduction (SSR) technique is explained in Phase2D. This method is effective for the prediction of the stability of slope. Based on numerical comparisons between the limit equilibrium methods and finite element method, it is suggested that the finite element method with SSR technique is a reliable and maybe unique approach to evaluate the slope stability. The paper also took into account effectiveness of the large rain and seismic load. The results of the numerical analysis are consistent with the observed slope surface evidence.


2011 ◽  
Vol 189-193 ◽  
pp. 2153-2160
Author(s):  
Yu Wen Sun ◽  
Chuan Tai Zhang ◽  
Qiang Guo

Optimal fixture involves fixture layout and clamping force determination. It is critical to ensure the machining accuracy of workpiece. In this paper, the clamping process is analyzed with the consideration of cutting forces and frictions using the finite element method. Then the fixture layout and clamping force are optimized by minimizing the workpiece deformation via a Genetic Algorithm (GA). Subsequently, linear programming method is used to estimate the stability of workpiece. It is shown through an example that the proposed method is proved to be efficient. The optimization result is not only far superior to the experiential one, but also the total optimization time can be reduced significantly.


1968 ◽  
Vol 8 (03) ◽  
pp. 241-252 ◽  
Author(s):  
Iraj Javandel ◽  
P.A. Witherspoon

Abstract The finite element method was originally developed in the aircraft industry to handle problems of stress distribution in complex airframe configurations. This paper describes how the method can be extended to problems of transient flow in porous media. In this approach, the continuum is replaced by a system of finite elements. By employing the variational principle, one can obtain time dependent solutions for the potential at every point in the system by minimizing a potential energy functional. The theory of the method is reviewed. To demonstrate its validity, nonsteady-state results obtained by the finite element method are compared with those of typical boundary value problems for which rigorous analytical solutions are available. To demonstrate the power of this approach, solutions for the more complex problem of transient flow in layered systems with crossflow are also presented. The generality of this approach with respect to arbitrary boundary conditions and changes in rock properties provides a new method of handling properties provides a new method of handling problems of fluid flow in complex systems. problems of fluid flow in complex systems Introduction Problems of transient flow in porous media often can be handled by the methods of analytical mathematics as long as the geometry or properties of the flow system do not become too complex. When the analytical approach becomes intractable, it is customary to resort to numerical methods, and a great variety of problems have been handled in this manner. One such method relies on the finite difference approach Wherein the system is divided into a network of elements, and a finite difference equation for the flow into and out of each element is developed. The solution of the resulting set of equations usually requires a high speed computer. When heterogeneous systems of arbitrary geometry must be considered, however, this approach is sometimes difficult to apply and may require large amounts of computer time. The finite element method is a new approach that avoids these difficulties. It was developed originally in the aircraft industry to provide a refined solution for stress distributions in extremely complex airframe configurations. Clough has recently reviewed the application of the finite element method in the field of structural mechanics The technique has been applied successfully in the stress analysis of many complex structures. Recognition that this procedure can be interpreted in terms of variational procedures involving minimizing a potential energy functional leads naturally to its extension to other boundary value problems. problems. In the field of heat flow, there recently have been introduced several approximate methods of solution that are based on variational principles. By employing the variational principle in conjunction with the finite element idealization, a powerful solution technique is now available for determining the potential distribution within complex bodies of arbitrary geometry. In the finite element approximation of solids, the continuum is replaced by a system of elements. An approximate solution for the potential field within each element is assumed, and flux equilibrium equations are developed at a discrete number of points within the network of finite elements. For the case of steady-state heat flow, the technique is completely described by Zienkiewicz and Cheung. Since the flow of fluids in porous media is analogous to the flow of heat, Zienkiewicz et al. have employed the finite element method in obtaining steady-state solutions to heterogeneous and anisotropic seepage problems. Taylor and Brown have used this method to investigate steady-state flow problems involving a free surface. The work of Gurtin has been instrumental in laying the groundwork for the application of finite element methods to linear initial-value problems. SPEJ P. 241


2018 ◽  
Vol 10 (10) ◽  
pp. 168781401880347 ◽  
Author(s):  
Ji Zhou ◽  
Duan-Wei Shi ◽  
Zhi-Lin Sun ◽  
Tao Bi ◽  
Xiong-Hao Cheng ◽  
...  

Taking the hydraulic cylinder for the miter gate in Dateng Gorges Water Conservancy Project as the object, a large slenderness ratio test hydraulic cylinder was designed based on the similarity theory. The buckling analysis of the test hydraulic cylinder was carried out by the finite element method, considering the friction at the supports, the misalignments between piston rod and cylinder tube, and gravity. The results indicate that the stability safety factor is 10.55. A buckling experimental system was established, and the buckling stability of the test hydraulic cylinder was tested for the sliding bearing support and the rolling bearing support at the piston-rod end, respectively. The stability safety factor is over 9.01 and 6.82 relevantly. The similarities and differences among the results of the finite element method, experimental method, NB/T 35020-2013, and two-sections pressure bar method were analyzed. Experimental and analytical results clearly show that the friction at the supports is a key factor in determining the magnitude of the stability safety for large slenderness ratio horizontal hydraulic hoist and utilizing the sliding bearing can effectively improve the stability safety factor.


2017 ◽  
Vol 11 (1) ◽  
pp. 14-19
Author(s):  
Ryszard Sygulski ◽  
Michał Guminiak ◽  
Łukasz Polus

Abstract The stability of the element of a steel welded girder subjected to bending and shear forces is considered. The considered element is a rectangular plate supported on boundary. The type of a plate boundary conditions depend on the types (thickness) of the stiffeners. Considered plate is loaded by in-plane forces causing bending and shear effects. The Finite Element Method was applied to carry out the analysis. Additionally the Boundary Element Method in terms of boundary-domain integral equation was applied to evaluate the critical shear loading.


1980 ◽  
Vol 17 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Jean Lafleur ◽  
Guy Lefebvre

Slope stability analyses in terms of effective stresses are most often based on hypothetical conditions of pore pressure. It is generally assumed that the flow occurs parallel to the slope or even that the conditions are hydrostatic. In fact, in situ measurements tend to show that the real situation could significantly deviate from these approximations due to geologic conditions. The influence of various geometric and stratigraphic factors on the groundwater regime and on the stability of slopes was studied with the finite-element method. To illustrate the parametric study, experimental evaluations of the flow patterns are presented at four sites. The stratigraphy and permeability measurements combined with the finite-element method enabled a complete flow net to be drawn and although some hypotheses had to be formulated with regards to the underlying aquifer recharge or permeability anisotropy, reasonable agreement was found between simulated and measured piezometric heads.


Sign in / Sign up

Export Citation Format

Share Document