scholarly journals Suspended Sediment Concentration and Sediment Loading of Bernam River (Perak, Malaysia)

2020 ◽  
Vol 22 (2) ◽  
pp. 1-14
Author(s):  
Sumayyah Aimi Mohd Najib ◽  
Syazwani Aliah ◽  
Husna Nabilah Hamidon

Abstract This paper presents some of our preliminary results on the sediment discharge and load based on weekly sampling starting from Oct 2017 to January 2018. Results show that sediment rating curve of Bernam River was R2 = 0.86 high flow and R2 = 0.5 low flow. Average sediment loading throughout this sampling period is 1,144 t. Land use activity is expected to be the main contribution for the highest sediment concentration during rain events. The amount of annual sediment yield was estimated at 23 t/km2/year and is comparable to other studies having similar land uses in the catchment area.

2021 ◽  
Author(s):  
Marcel van der Perk

<p>In an ongoing study to the decline in suspended sediment concentrations and loads in the Rhine river since the mid-1950s, the temporal changes in the power-law sediment rating curve parameters were examined. This revealed that the rating exponent of the rating curve increased substantially between the early and late 1980s. Until the early 1980s, the ratings curves were relatively flat with values of the rating exponent b varying around 0.2. In the mid-1980s, the exponent suddenly increased to a value between 0.4 and 0.6 and since then has remained within this range. This change in the rating exponent was mainly caused by a decrease in suspended sediment concentrations during low discharges. During high discharges, the suspended sediment concentration initially increased during the late 1980s, but this increase was nullified soon afterwards due to the declining trend in suspended sediment concentration.</p><p>The sudden increase of the rating exponent coincided with the period that the Ponto-Caspian <em>Chelicorophium curvispinum</em> (Caspian mud shrimp) invaded the Rhine river basin. This suggests that this suspension-feeder species bears the prime responsibility for this increase, although this hypothesis requires further independent evidence. The sudden increase in the rating exponent does however not manifest itself in the long-term gradual trend of declining suspended sediment concentrations and vice versa. Apparently, the sequestration of sediment by <em>Chelicorophium curvispinum</em> is only temporary: the suspended sediment sequestered during periods of relatively low discharges is likely remobilised again during periods of high discharge. This implies that the invasion of <em>Chelicorophium curvispinum</em> has not played a significant role in the decline of suspended sediment concentrations. The precise reasons for the gradual long-term decline in suspended sediment concentration remain yet unknown.</p>


Author(s):  
Hossein Khaledian ◽  
Homayoun Faghih ◽  
Ata Amini

In this study, data classification method was evaluated to increase accuracy of estimating suspended sediment load. To achieve this objective, suspended sediment in Chehelgazi and Khalifeh-Tarkhan rivers in Kurdistan, Iran, were estimated using Sediment Rating Curve (SRC) method in three different approaches of data classification. At first, measured data were modeled without classification. Then, data based on flow statues were divided into two series as high and low flow. Eventually, based on sediment concentration, the data were divided into low and high sediment concentration. Long-term runoff and sediment data were used to calibrate rating curve model. The estimated values were compared with recorded data and the performances of these models were evaluated using statistical criteria. The results indicated an effective role of data classification to improve estimating sediment transportation by rating curve method. In one of the stations, it was observed that due to classification based on river flow and sediment concentration, model efficiency was increased about 45% and 28%, respectively. Furthermore, in case of improving efficiency of SRC method, classifying data based on flow statues was found to be more effective than sediment concentration. The results of this study can be used to improve the management of the basin by more accurately estimating the amount of suspended sediments transporting in the rivers draining to reservoirs.


1999 ◽  
Vol 3 (2) ◽  
pp. 285-294 ◽  
Author(s):  
R. Lidén

Abstract. A semi-distributed conceptual model, HBV-SED, for estimation of total suspended sediment concentration and yield at the outlet of a catchment was developed and tested through a case study. The base of the suspended sediment model is a dynamic hydrological model, which produces daily series of areal runoff and rainfall for each sub-basin as input to the sediment routine. A lumped measure of available sediment is accumulated continuously based on a linear relationship between log-transformed values of rainfall and erosion, while discharge of suspended sediment at the sub-basin outlet is dependent on runoff and amount of stored available sediment. Four model parameter are empirically determined through calibration against observed records of suspended sediment concentration. The model was applied to a 200 km2 catchment with high altitude differences in the tropical parts of Bolivia, where recorded suspended sediment concentrations were available during a two-year period. 10,000 parameter sets were generated through a Monte Carlo procedure to evaluate the parameter sensitivity and interdependence. The predictability of the model was assessed through dividing the data record into a calibration and an independent period for which the model was validated and compared to the sediment rating curve technique. The results showed that the slope coefficients of the log-transformed model equations for accumulation and release were much stronger than the intercept coefficients. Despite and existing interdependence between the model parameters, the HBV-SED model gave clearly better results than the sediment rating curve technique for the validation period, indication that the supply-based approached has a promising future as a tool for basic engineering applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Wang ◽  
Hiroshi Ishidaira ◽  
Wenchao Sun ◽  
Shaowei Ning

Suspended sediment concentration of a river can provide very important perspective on erosion or soil loss of one river basin ecosystem. The changes of land use and land cover, such as deforestation or afforestation, affect sediment yield process of a catchment through changing the hydrological cycle of the area. A sediment rating curve can describe the average relation between discharge and suspended sediment concentration for a certain location. However, the sediment load of a river is likely to be undersimulated from water discharge using least squares regression of log-transformed variables and the sediment rating curve does not consider temporal changes of vegetation cover. The Normalized Difference Vegetation Index (NDVI) can well be used to analyze the status of the vegetation cover well. Thus long time monthly NDVI data was used to detect vegetation change in the past 19 years in this study. Then monthly suspended sediment concentration and discharge from 1988 to 2006 in Laichau station were used to develop one new sediment rating curve and were validated in other Asian basins. The new sediment model can describe the relationship among sediment yield, streamflow, and vegetation cover, which can be the basis for soil conservation and sustainable ecosystem management.


2020 ◽  
Vol 8 (3) ◽  
pp. 661-678
Author(s):  
Thomas O. Hoffmann ◽  
Yannik Baulig ◽  
Helmut Fischer ◽  
Jan Blöthe

Abstract. Understanding the transport of suspended sediment and associated nutrients is of major relevance for sustainable sediment management aiming to achieve healthy river systems. Sediment rating curves are frequently used to analyze the suspended sediments and their potential sources and sinks. Here we use more than 750 000 measurements of suspended sediment concentrations (SSCs) and discharge (Q) collected at 62 gauging stations along 19 waterways in Germany based on the suspended sediment monitoring network of the German water and shipping authority, which started in the 1960s. Furthermore, we analyze more than 2000 measurements of the loss on ignition (LOI) of suspended matter at two stations along the rivers Moselle and Rhine to provide a proxy for the relative contributions of mineral load and organic matter. SSC and LOI are analyzed in terms of the power-law rating curve to identify discharge-dependent controls of suspended matter. Our results indicate that for most studied gauging stations, rating coefficients are not constant over the full discharge range, but there is a distinct break in the sediment rating curve, with specific SSC–Q domains above and below this break. The transition of the rating exponent likely results from increased supply of mineral suspended sediments from hillslope erosion at high flow and a shift of the organic matter sources from aquatic biomass-derived organic matter (i.e., high % LOI) at low flow, to mineral-associated organic matter with low % LOI eroded from hillslopes at higher flow. Based on these findings we developed a conceptual rating model for large (>10 000 km2) and low-turbidity (SSC < 1000 mg L−1) rivers separating the mineral and organic fraction of the suspended matter in German waterways. This model allows evaluating the sources of the mineral and organic fraction of the suspended matter and facilitates new insights into the first-order control of discharge on the quality and quantity of suspended sediments.


2018 ◽  
Author(s):  
Anna Costa ◽  
Daniela Anghileri ◽  
Peter Molnar

Abstract. We analyse the control of hydroclimatic factors on suspended sediment concentration (SSC) in Alpine catchments by differentiating among the potential contributions of erosion and suspended sediment transport driven by erosive rainfall, defined as liquid precipitation over snow free surfaces, icemelt from glacierized areas, and snowmelt on hillslopes. We account for the potential impact of hydropower by intercepting sediment fluxes originated in areas diverted to hydropower reservoirs, and by considering the contribution of hydropower releases to SSC. We obtain the hydroclimatic variables from daily gridded datasets of precipitation and temperature, implementing a degree–day model to simulate spatially distributed snow accumulation and snow–ice melt. We estimate hydropower releases by a conceptual approach with a unique virtual reservoir regulated on the basis of a target–volume function, representing normal reservoir operating conditions throughout a hydrological year. An Iterative Input Selection algorithm is used to identify the variables with the highest predictive power for SSC, their explained variance, and characteristic time lags. On this basis, we develop a hydroclimatic multivariate rating curve (HMRC) which accounts for the contributions of the most relevant hydroclimatic input variables mentioned above. We calibrate the HMRC with a gradient–based nonlinear optimization method and we compare its performance with a traditional discharge–based rating curve. We apply the approach in the upper Rhone Basin, a large Swiss Alpine catchment, heavily regulated by hydropower. Our results show that the three hydroclimatic processes – erosive rainfall, icemelt, and snowmelt – are significant predictors of mean daily SSC, while hydropower release does not have a significant explanatory power for SSC. The characteristic time lags of the hydroclimatic variables correspond to the typical flow concentration times of the basin. Despite not including discharge, the HMRC performs better than the traditional rating curve in reproducing SSC seasonality, especially during validation at the daily scale. While erosive rainfall determines the daily variability of SSC and extremes, icemelt generates the highest SSC per unit of runoff, and represents the largest contribution to total suspended sediment yield. Finally, we show that the HMRC is capable of simulating climate–driven changes in fine sediment dynamics in Alpine catchments. In fact, HMRC can reproduce the changes in SSC in the past 40 years in the Rhone Basin connected to air temperature rise, even though the simulated changes are more gradual than those observed. The approach presented is this paper, based on the analysis of the hydroclimatic control on suspended sediment concentration, allows the exploration of climate–driven changes in fine sediment dynamics in Alpine catchments. The approach can be applied to any Alpine catchment with a pluvio–glacio–nival hydrological regime and adequate hydroclimatic datasets.


Soil Research ◽  
2004 ◽  
Vol 42 (2) ◽  
pp. 203 ◽  
Author(s):  
Shahadat Hossain ◽  
Bradley D. Eyre ◽  
David McConchie

Dry season suspended sediment concentration and sedimentation in the Richmond River catchment were investigated during 2 hydrological years (1994–96). Longitudinal suspended sediment transects during low flow months showed that the Richmond River estuary remained well mixed and maintained <30 mg/L suspended sediment concentration without any visible turbidity maximum zone all along the estuary. During the entire dry season, there is very little exchange of suspended sediment between the upper and lower estuaries because of very small input from the upper catchment. The estuary receives net sediment input from the continental shelf during the dry months under normal tidal circulation, and marker horizon core samples confirmed that most of these imported sediments were deposited in the lower estuary; during the 2 dry seasons, lower estuary sedimentation rate varied about 0.84 ± 0.31 cm to 0.48 ± 0.3 cm. Flushing times of the Richmond River estuary show that all point and non-point source inputs of sediments and pollutants into the estuary can be flushed out during one dry season.


2016 ◽  
Vol 20 (4) ◽  
pp. 1355-1372 ◽  
Author(s):  
Mohammed Achite ◽  
Sylvain Ouillon

Abstract. Here we investigate the changes of temperature, precipitation, river runoff and sediment transport in the Wadi Abd in northwest Algeria over a time series of 40 hydrological years (1970–2010). Temperature increased and precipitation decreased with the reduction in rainfall being relatively higher during the rainy season. A shift towards an earlier onset of first rains during summer was also found with cascading effects on hydrology (hydrological regimes, vegetation, etc.) and thus on erosion and sediment yield. During the 1980s, the flow regime shifted from perennial to intermittent with an amplification of the variations of discharge and a modification of the sediment regime with higher and more irregular suspended particulate flux. Sediment flux was shown to almost double every decade from the 1970s to the 2000s. The sediment regime shifted from two equivalent seasons of sediment yield (spring and fall) to a single major season regime. In the 2000s, autumn produced over 4 times more sediment than spring. The enhanced scatter of the C–Q pairs denotes an increase of hysteresis phenomena in the Wadi Abd that is probably related to the change in the hydrologic regime. At the end of the period, due to irregularity of the discharge, the ability of a rating curve to derive suspended sediment concentration from river discharge was poor.


Sign in / Sign up

Export Citation Format

Share Document