scholarly journals Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter

Author(s):  
Saúl de Oca ◽  
Vicenç Puig ◽  
Marcin Witczak ◽  
Łukasz Dziekan

Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter In this paper, a Fault Tolerant Control (FTC) strategy for Linear Parameter Varying (LPV) systems that can be used in the case of actuator faults is proposed. The idea of this FTC method is to adapt the faulty plant instead of adapting the controller to the faulty plant. This approach can be seen as a kind of virtual actuator. An integrated FTC design procedure for the fault identification and fault-tolerant control schemes using LPV techniques is provided as well. Fault identification is based on the use of an Unknown Input Observer (UIO). The FTC controller is implemented as a state feedback controller and designed using polytopic LPV techniques and Linear Matrix Inequality (LMI) regions in such a way as to guarantee the closed-loop behavior in terms of several LMI constraints. To assess the performance of the proposed approach, a two degree of freedom helicopter is used.

2020 ◽  
Vol 42 (12) ◽  
pp. 2308-2323
Author(s):  
Salama Makni ◽  
Maha Bouattour ◽  
Ahmed El Hajjaji ◽  
Mohamed Chaabane

In this work, we investigate the problem of control for nonlinear systems represented by Takagi-Sugeno (T-S) fuzzy models affected by both sensor and actuator faults subject to an unknown bounded disturbances (UBD). For this, we design an adaptive observer to estimate state, sensor and actuator fault vectors simultaneously despite the presence of external disturbances. Based on this observer, we develop a fault tolerant control (FTC) law not only to stabilize closed loop system, but also to compensate the fault effects. For the observer-based controller design, we propose less conservative conditions formulated in terms of linear matrix inequalities (LMIs). Moreover, both observer and controller gains are calculated via solving a set of LMIs only in single step. Finally, comparative results and an application to single-link flexible joint robot are afforded to prove the efficiency of the proposed design.


2013 ◽  
Vol 325-326 ◽  
pp. 1099-1105 ◽  
Author(s):  
Tao Tao ◽  
Hong Ze Xu

This paper studies the robust fault-tolerant control problem against actuator faults and parameter uncertainty for High-Speed Trains. First, models of actuator faults and parameter uncertainty are presented. Then a robust fault-tolerant tracking controller design method is developed. This method is based on the mixed Linear Matrix Inequalities (LMI)/Lyapunov stability theory. Tracking control examples and simulations are given, and the response curves of the fault system and the system with the fault-tolerant tracking controller are presented.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2350 ◽  
Author(s):  
Guodong You ◽  
Tao Xu ◽  
Honglin Su ◽  
Xiaoxin Hou ◽  
Jisheng Li

The problem of robust fault-tolerant control for actuators of nonlinear systems with uncertain parameters is studied in this paper. Takagi–Sugeno (T-S) fuzzy model is used to describe the wind energy conversion system (WECS). Fuzzy dedicated observer (FDO) and fuzzy proportional integral observer (FPIO) are established to reconstruct the system state and actuator fault, respectively. Fuzzy Robust Scheduling Fault-Tolerant Controller (FRSFTC) is designed by parallel distributed compensation (PDC) method, so as to realize the purpose of active fault tolerance for actuator faults and ensure the robust stability of the system. The stability of the closed-loop system is proved by Taylor series, Lyapunov function, and Linear Matrix Inequalities (LMIs). Finally, the simulation results verify that the proposed method is feasible and effective applied to WECS with doubly fed induction generators (DFIG).


2021 ◽  
Vol 11 (16) ◽  
pp. 7236
Author(s):  
Xiangxiang Su ◽  
Benxian Xiao

For the problem of actuator-integrated fault estimation (FE) and fault tolerant control (FTC) for the electric power steering (EPS) system of a forklift, firstly, a dynamic model of a forklift EPS system with actuator faults was established; then, an integrated FE and FTC design was proposed. The nonlinear unknown input observer (NUIO) was proposed to estimate the system states and actuator faults, and an adaptive sliding mode FTC system was constructed based on it. The gain of the observer and controller is obtained by H∞ optimization and one-step linear matrix inequality (LMI) formula operation in order to realize the overall optimal design of an FTC system. Finally, the experimental results show that when actuator failure occurs, the proposed integrated FE and FTC were more accurate than the decentralized design to estimate the system states and the actuator faults. The proposed fault-tolerant controller can more effectively restore the power assist performance of the steering power motor in case of failure and effectively ensure the safety and reliability of the forklift EPS system.


2020 ◽  
Vol 25 (3) ◽  
pp. 48
Author(s):  
Francisco-Ronay López-Estrada ◽  
Oscar Santos-Estudillo ◽  
Guillermo Valencia-Palomo ◽  
Samuel Gómez-Peñate ◽  
Carlos Hernández-Gutiérrez

The main aim of this paper is to propose a robust fault-tolerant control for a three degree of freedom (DOF) mechanical crane by using a convex quasi-Linear Parameter Varying (qLPV) approach for modeling the crane and a passive fault-tolerant scheme. The control objective is to minimize the load oscillations while the desired path is tracked. The convex qLPV model is obtained by considering the nonlinear sector approach, which can represent exactly the nonlinear system under the bounded nonlinear terms. To improve the system safety, tolerance to partial actuator faults is considered. Performance requirements of the tracking control system are specified in an H∞ criteria that guarantees robustness against measurement noise, and partial faults. As a result, a set of Linear Matrix Inequalities is derived to compute the controller gains. Numerical experiments on a realistic 3 DOF crane model confirm the applicability of the control scheme.


2011 ◽  
Vol 59 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Ł. Dziekan ◽  
M. Witczak ◽  
J. Korbicz

Active fault-tolerant control design for Takagi-Sugeno fuzzy systemsIn this paper, a virtual actuator-based active fault-tolerant control strategy is presented. After a short introduction to Takagi-Sugeno fuzzy systems, it is shown how to design a fault-tolerant control strategy for this particular class of non-linear systems. The key contribution of the proposed approach is an integrated fault-tolerant control design procedure of fault identification and control within an integrated fault-tolerant control scheme. In particular, fault identification is implemented with the suitable state observer. While, the controller is implemented in such a way that the state of the (possibly faulty) system tracks the state of a fault-free reference model. Consequently, the fault-tolerant control stabilizes the possibly faulty system taking into account the input constraints and some control objective function. Finally, the last part of the paper shows a comprehensive case study regarding the application of the proposed strategy to fault-tolerant control of a twin-rotor system.


Sign in / Sign up

Export Citation Format

Share Document