Determination of Internal Forces in End Plates of Simple End Plate Joints

2009 ◽  
Vol 12 (-1) ◽  
pp. 83-94
Author(s):  
Stefan Dominikowski ◽  
Piotr Bogacz
Keyword(s):  
1978 ◽  
Vol 104 (1) ◽  
pp. 255-272
Author(s):  
E.Y. Chao ◽  
K.N. An
Keyword(s):  

2014 ◽  
Vol 39 (11) ◽  
pp. 7661-7671 ◽  
Author(s):  
Gholamreza Abdollahzadeh ◽  
Seyed Mojtaba Hashemi ◽  
Hamidreza Tavakoli ◽  
Hosein Rahami

2018 ◽  
Vol 196 ◽  
pp. 01014 ◽  
Author(s):  
Avgustina Astakhova

The paper focuses on the model of calculation of thin isotropic shells beyond the elastic limit. The determination of the stress-strain state of thin shells is based on the small elastic-plastic deformations theory and the elastic solutions method. In the present work the building of the solution based on the equilibrium equations and geometric relations of linear theory of thin shells in curved coordinate system α and β, and the relations between deformations and forces based on the Hirchhoff-Lave hypothesis and the small elastic-plastic deformations theory are presented. Internal forces tensor is presented in the form of its expansion to the elasticity tensor and the additional terms tensor expressed the physical nonlinearity of the problem. The functions expressed the physical nonlinearity of the material are determined. The relations that allow to determine the range of elastic-plastic deformations on the surface of the present shell and their changing in shell thickness are presented. The examples of the calculation demonstrate the convergence of elastic-plastic deformations method and the range of elastic-plastic deformations in thickness in the spherical shell. Spherical shells with the angle of half-life regarding 90 degree vertical symmetry axis under the action of equally distributed ring loads are observed.


2014 ◽  
Vol 1025-1026 ◽  
pp. 878-884
Author(s):  
Jong Wan Hu ◽  
Jun Hyuk Ahn

This paper is principally performed to survey end-plate connection are described in the next part based on ideal limit states. The determination of end-plate based on the full plastic strength of the steel beam in accordance with 2001 AISC-LRFD manual and AISC/ANSI 358-05 Specifications. The bolted connections considered herein were performed to include the end-plate component of moment connections. This study is intended to investigate economic design for end-plate connections. In addition, the proposed end-plate model is evaluated by comparing the required factored bolt strength. The end-plates using 8 high strength bolts with wider gages demonstrated this design. The equations belonging to the step-by-step design procedure are described based on complete proving of design. Finally, new design methodology is applied to end-plate connections suggested in this study.


Author(s):  
Benjamin J. Fregly ◽  
Yi-Chung Lin ◽  
Jonathan P. Walter ◽  
Justin W. Fernandez ◽  
Scott A. Banks ◽  
...  

Walking is important for human health, and independent ambulation predicts quality of life [1]. The study and treatment of neurological and joint disorders that inhibit walking would be more effective if muscle and joint forces could be determined reliably for individual patients. Knowledge of muscle forces is needed to characterize muscle coordination, which is a factor in neurological disorders such as cerebral palsy and stroke, while knowledge of joint contact forces is needed to characterize articular loading, which is a factor in bone and joint disorders such as osteoporosis and osteoarthritis. Reliable determination of these internal forces for individual patients would facilitate the design of customized surgical and rehabilitation treatments that maximize functional outcome.


2011 ◽  
Vol 90-93 ◽  
pp. 1987-1991 ◽  
Author(s):  
Hong Bing You

A hybrid simulation method is used to generate two group artificial ground motions that are compatible with the same acceleration response spectrum, same peak displacement and different peak ground velocity (PGV). The influences of PGV on the internal forces of subway station are studied. For the time histories with the same response spectrum and same peak displacement, the larger PGV of input motions may lead to the great plastic deformation of the soil, and then cause the larger internal forces for the most elements of subway station. The influence of PGV should be considered reasonably in determination of design ground motion parameters for underground structures.


Nature ◽  
1958 ◽  
Vol 181 (4611) ◽  
pp. 779-779 ◽  
Author(s):  
NORIKO TAKEUCHI ◽  
AKIRA TAKEUCHI

2017 ◽  
Vol 21 ◽  
pp. 151-157
Author(s):  
Alexandrina Elena Pandelea ◽  
Mihai Budescu ◽  
Lucian Soveja ◽  
Maria Solonaru

Design and verification of engineering structures require knowing the numerical values ​​of sectional internal forces as close to reality, considering that the intervention construction works are correlated with these values.Most of the computer programs are working with finite element method, which was designed by engineers and founded by mathematicians. After running the computer program, stresses and deformations maps are generated as results.Considering these results, using artificial neural networks, a computer program has been designed, which is able to determine internal forces of a section, namely axial force, shear force and bending moment.Neural network input parameters consist of color maps resulted from numerical modeling, numerical values ​​of the normal and tangential tensions and dimensions of the structural element.This procedure is particularly useful when using finite element programs that do not have the ability to determine sectional internal forces.


2005 ◽  
Vol 11 (3) ◽  
pp. 217-224 ◽  
Author(s):  
Kestutis Urbonas ◽  
Alfonsas Daniūnas

This paper presents an analysis of semi‐rigid beam‐to‐beam end‐plate bolted and beam‐to‐column end‐plate bolted knee joints that are subjected to bending and tension or compression axial force. Usually the influence of axial force on joint rigidity is neglected. According to EC3, the axial load, which is less than 10 % of plastic resistance of the connected member under axial force, may be disregarded in the design of joint. Actually the level of axial forces in joints of structures may be significant and has a significant influence on joint rigidity. One of the most popular practical method permitting the determination of rigidity and strength of joint is the so‐called component method. The extension of the component method for evaluating the influence of bending moment and axial force on the rigidity and strength of the joint are presented in the paper. The numerical results of calculations of rigidity and strength of beam-to-beam and beam-to-column knee joints are presented in this paper as well.


Sign in / Sign up

Export Citation Format

Share Document