scholarly journals Selection-Based heritability of Resistance to Pythium Ultimum in Safflower

2014 ◽  
Vol 66 (1) ◽  
pp. 109-117
Author(s):  
Elham Nikmanesh ◽  
Mohammadhadi Pahlevani ◽  
Seyed Esmaeil Razavi

Abstract Damping-off disease caused by Pythium ultimum can kill both germinating seeds and young seedlings and cause considerable damage in saflower cultivation. An estimation of heritability lets saflower breeders determine the most effective method for improving seedling emergence in soils infected with P. ultimum, the causal agent of seed rot and damping-off. Two cycles of selection were performed to estimate the realized heritability of resistance to the pathogen in five safflower populations. Undamaged seedlings were selected as resistant individuals and were kept to produce seed. The results showed that selection for two consecutive generations increased the emergence of seedlings in Pythium-infected soil from 46 to 53 %. The heritability estimates varied between 1.72 and 77.66 % over the genotypes and environments, in inverse proportion to the severity of the disease. Estimates of heritabilities showed that genes conferring resistance to P. ultimum in safflower are highly heritable and would respond to selection breeding, particularly in some of the studied genotypes, like Isfahan and Zarghan259. However, different breeding methods must be explored for other genotypes.

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1110f-1110
Author(s):  
Nancy W. Callan ◽  
James B. Miller ◽  
Don E. Mathre

Shrunken-2 supersweet (sh2) sweet corn is susceptible to preemergence damping-off caused by Pythium ultimum, especially when planted into cold soil. Bio-priming, a seed treatment which combines the establishment of a bioprotectant on the seed with preplant seed hydration, was developed to protect seeds from damping-off.In a series of field experiments conducted in Montana's Bitterroot and Gallatin Valleys, bio-priming or seed bacterization with Pseudomonas fluorescens AB254 protected sweet corn from P. ultimum damping-off. Bio-priming corn seed with P. fluorescens AB254 was comparable to treatment with the fungicide metalaxyl in increasing seedling emergence. Seedlings from bio-primed seeds emerged from the soil more rapidly than from nontreated seeds and were larger at three weeks postplanting. Seeds of sh 2 and sugary enhancer (se) sweet corn, as well as that of several sh 2 cultivars, were protected from damping-off by bio-priming.


Plant Disease ◽  
2020 ◽  
Author(s):  
Mohamed Fizal Khan ◽  
Md. Ehsanul Haque ◽  
Peter Hakk ◽  
Md. Ziaur Rahman Bhuyian ◽  
Yangxi Liu ◽  
...  

Sugar beet (Beta vulgaris L.) is a globally important crop for sugar. In May 2019, sugar beet seedlings were observed with wilting, lodging and a few were dead in Glendive (46.970170, -104.838204), Montana. Symptoms appeared near the soil line as the stem (hypocotyl) turned dark brown to black with characteristic thread-like infections which resembled Pythium damping-off. It affected approximately 10% of the growing seedlings. Diseased sugar beet root tissues were excised with a sterile scalpel and small pieces (10 mm²) were surface sterilized with 70 % ethanol for 30 seconds, rinsed twice with autoclaved water, air-dried and transferred to potato dextrose agar (PDA) media amended with pimaricin-vancomycin-PCNB (Conway, 1985). Four plates were incubated at 25° C in the dark (Masago et al., 1977) and two weeks later white, dense colony was observed (Zhang et al., 2018). The terminal smooth, globose oogonia (average 18.5 µm in diameter) and antheridia (average 14.5 × 9.5 µm) extended below the oogonium were observed via VWR N. A. 0.30 microscope. The morphological features of the four isolates were consistent with Pythium ultimum Trow (Watanabe, 2002). Genomic DNAs (NORGEN BIOTEK CORP, Fungi DNA Isolation Kit #26200) of four isolates were used for polymerase chain reaction (PCR) with the ITS6-ITS7 primers (Taheri et al., 2017). Subsequently, PCR products were flushed by E.Z.N.A ®Cycle Pure Kit, OMEGA and four samples were sent for Sanger sequencing to GenScript (GenScript, Piscataway, NJ). The sequences were identical and submitted to GenBank, NCBI (accession no. MN398593). The NCBI Blast analysis showed 100% sequence homology to Pythium ultimum with the following GenBank accessions; KF181451.1, KF181449.1 and AY598657.2. Pathogenicity test was done on sugar beet with the same isolates in the greenhouse. Two week old, pythium culture was mixed with vermiculite and perlite mixer (PRO-MIX FLX) in the plastic trays (24´´ x 15´´× 3˝), (22 °C, 75% Relaive Humidity). Sterile water (500 ml/each tray) was added in the mixer to provide sufficient moisture. Twenty seeds of cv. Hilleshog 4302 were sown in the tray, and the trays were replicated thrice with inoculated and mock treatments. Plants were watered as needed to maintain adequate soil moisture conducive for plant growth and disease development. Seven days after sowing, 50% and 100% germination was observed in the inoculated and control treatments, respectively. At the beginning of the second week, 30% post-emergence damping-off was observed in the inoculated treatments. Diseased seedlings were gently pulled out from the pots where similar symptoms were observed in the sugar beet seedlings as described previously. No incidence of disease was observed in mock-treated seedlings. Consistent reisolation of Pythium ultimum was morphologically and molecularly confirmed from the diseased seedlings, thus fulfilling Koch’s postulates. Pythium spp identification is prerequisite to develop effective management of pre and post-emergence damping-off. Pythium ultimum was previously reported in Nebraska to cause sugar beet seed rot and pre-emergence damping-off (Harvenson 2006). To our knowledge, this is the first report of Pythium ultimum causing damping-off on sugar beet in the Sidney factory district in Montana.


Plant Disease ◽  
2001 ◽  
Vol 85 (5) ◽  
pp. 535-537 ◽  
Author(s):  
K. E. Conway ◽  
R. Mereddy ◽  
B. A. Kahn ◽  
Y. Wu ◽  
S. W. Hallgren ◽  
...  

Two field trials at Stillwater and Bixby, OK, evaluated the efficacy of solid matrix priming techniques, alone or in combination with fungicide seed treatment on seedling emergence and reduction of damping-off of okra in field soil naturally infested with Pythium ultimum. The following treatments were evaluated: thiram + carboxin (chemo-primed) (commercially applied), biological seed treatment (bio-primed) (Trichoderma harzianum isolate OK-110, 1 g suspended in 1% carboxymethylcellulose [CMC]), untreated seed (control), and a 1% CMC control. Chemo-primed seeds had a more uniform and faster emergence compared with untreated seeds at both field sites. Within 3 days, 92 and 78% of chemo-primed seeds had emerged at Stillwater and Bixby, respectively, compared with 84 and 71% emergence in the untreated control. Mean emergence of chemo-primed seeds was lower (P ≤ 0.05) than the untreated control. Chemo-primed seeds had greater vigor (P≤ 0.05) at both locations compared with either fungicide-treated or priming alone, at both locations. There were no differences (P ≤ 0.05) in yield among treatments at both locations. P. ultimum was consistently isolated from damped-off seedlings and surrounding soil at both locations. Isolates of P. ultimum were more pathogenic on okra in laboratory tests than isolates of Rhizoctonia spp., Fusarium spp., and other Pythium spp. also isolated from seed or soil.


2012 ◽  
Vol 91 ◽  
pp. 3-10 ◽  
Author(s):  
Lai Wei ◽  
Allen G. Xue ◽  
Elroy R. Cober ◽  
Carolyn Babcock ◽  
Jinxiu Zhang ◽  
...  

Pythium species cause seed rot (SR) and damping-off (DO) in soybean worldwide. In a previous study, a number of Pythium species were isolated from infected soybean plants across Ontario and Quebec, but their comparative pathogenicities to soybean were not examined. In the present research, 24 isolates from eight Pythium spp. were evaluated for their pathogenicity in causing soybean SR and DO in a greenhouse environment. The effect of temperature on the ability of these isolates to cause SR was also studied. There were significant differences among the eight Pythium spp. for both SR and DO. When tested at 25°C, Pythium ultimum was the most pathogenic species, causing 97.0% SR and 46.4% DO, on average, in the two soybean cultivars used. Pythium aphanidermatum was the second most pathogenic species, resulting in 88.5% SR and 41.8% DO. The two species resulted in significantly greater SR and DO than the other six species tested and were considered highly pathogenic. Of the two cultivars used in these trials, ‘Beechwood’ was significantly more susceptible than ‘Nattawa’ to both SR and DO. Temperature had a significant influence on SR caused by Pythium spp. At all four temperatures tested (4°C, 12°C, 20°C and 28°C), P. ultimum was highly pathogenic, while P. arrenomanes, P. coloratum and P. dissotocum were the least pathogenic. The interactions between temperature and Pythium spp. were more pronounced for P. aphanidermatum, which showed an increased percentage of SR with an increase in temperature, and for P. irregulare, P. macrosporum and P. sylvaticum, which showed a decreased percentage of SR with an increase in temperature.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
M. León ◽  
P. M. Yaryura ◽  
M. S. Montecchia ◽  
A. I. Hernández ◽  
O. S. Correa ◽  
...  

The purpose of this study was to isolate and select indigenous soilPseudomonasandBacillusbacteria capable of developing multiple mechanisms of action related to the biocontrol of phytopathogenic fungi affecting soybean crops. The screening procedure consisted of antagonism tests against a panel of phytopathogenic fungi, taxonomic identification, detection by PCR of several genes related to antifungal activity, in vitro detection of the antifungal products, and root colonization assays. Two isolates, identified and designated asPseudomonas fluorescensBNM296 andBacillus amyloliquefaciensBNM340, were selected for further studies. These isolates protected plants against the damping-off caused byPythium ultimumand were able to increase the seedling emergence rate after inoculation of soybean seeds with each bacterium. Also, the shoot nitrogen content was higher in plants when seeds were inoculated with BNM296. The polyphasic approach of this work allowed us to select two indigenous bacterial strains that promoted the early development of soybean plants.


1995 ◽  
Vol 75 (2) ◽  
pp. 505-509 ◽  
Author(s):  
H.-H. Mündel ◽  
H. C. Huang ◽  
G. C. Kozub ◽  
D. J. S. Barr

The effects of soil moisture, soil temperature and Pythium ultimum Trow var. ultimum, on the emergence of safflower seedlings were investigated. The effect on emergence of safflower cultivar, Saffire, in Pythium-infested and in sterile soil was tested at three moisture stress levels (1500 kPa, 30 kPa, or 0 kPa), and five temperatures (5, 10, 15, 20, and 25 °C). Both factors affected emergence. At 0 kPa, emergence of safflower seedlings in both the Pythium-infested and sterile soil treatments averaged 4%. In sterile soil, at both 30 kPa and 1500 kPa, seedling emergence exceeded 85% at all temperatures. In Pythium-infested soil at 30 kPa, emergence was greater than 85% at 5 and 10 °C, but only 67, 49, and 27% at 15, 20 and 25 °C, respectively. Within the temperature range, 10–25 °C, seedling emergence in Pythium-infested soil was significantly less at 30 kPa than at 1500 kPa. In fields in the southern Canadian prairies infested with Pythium ultimum, safflower seeded into warm soil is likely to have poor stand establishment due to damping-off, especially if soil is wet. Thus it is advisable to plant safflower early, when soil is cool. Key words:Carthamus tinctorius, Pythium ultimum var. ultimum, Pythium sp. "group G", damping-off, seedling blight, soil moisture, temperature


Plant Disease ◽  
2020 ◽  
Author(s):  
Moying Wang ◽  
Stephen Van Vleet ◽  
Rebecca McGee ◽  
Timothy Carl Paulitz ◽  
Lyndon D. Porter ◽  
...  

Metalaxyl and its isomer mefenoxam have been the primary fungicides used as seed treatments in managing Pythium seed rot and damping-off of chickpea. However, recent outbreaks of seed rot and damping-off of metalaxyl-treated chickpea seeds were found in the dryland agriculture regions of southeastern Washington and northern Idaho. Pythium spp. isolated from rotten seeds and associated soils showed high levels of resistance to metalaxyl. Large proportions (31 to 91%) of Pythium isolates resistant to metalaxyl were detected in areas where severe chickpea damping-off occurred and were observed in commercial chickpea fields over several years. All metalaxyl-resistant isolates were identified as P. ultimum var. ultimum. The metalaxyl resistance trait measured by EC50 values was stable over 10 generations in the absence of metalaxyl, and no observable fitness costs were associated with metalaxyl resistance. Under controlled conditions, metalaxyl treatments failed to protect chickpea seeds from seed rot and damping-off following inoculation with metalaxyl-resistant Pythium isolates. In culture, ethaboxam inhibited mycelial growth of metalaxyl-resistant, as well as metalaxyl-sensitive isolates. Greenhouse and field tests showed that ethaboxam is effective in managing metalaxyl-resistant Pythium. Ethaboxam in combination with metalaxyl is now commonly applied as seed treatments in commercial chickpea production.


Genetics ◽  
1973 ◽  
Vol 73 (3) ◽  
pp. 513-530
Author(s):  
J P Hanrahan ◽  
E J Eisen ◽  
J E Legates

ABSTRACT The effects of population size and selection intensity on the mean response was examined after 14 generations of within full-sib family selection for postweaning gain in mice. Population sizes of 1, 2, 4, 8 and 16 pair matings were each evaluated at selection intensities of 100% (control), 50% and 25% in a replicated experiment. Selection response per generation increased as selection intensity increased. Selection response and realized heritability tended to increase with increasing population size. Replicate variability in realized heritability was large at population sizes of 1, 2 and 4 pairs. Genetic drift was implicated as the primary factor causing the reduced response and lowered repeatability at the smaller population sizes. Lines with intended effective population sizes of 62 yielded larger selection responses per unit selection differential than lines with effective population sizes of 30 or less.


Sign in / Sign up

Export Citation Format

Share Document