Correlation Analysis between Grounding Resistance and Diurnal Variations of Upper Soil Resistivity during March 2010 in Balozhi, Latvia

Author(s):  
Marina Kizhlo ◽  
Arvids Kanbergs ◽  
Mihails Kizhlo

Correlation Analysis between Grounding Resistance and Diurnal Variations of Upper Soil Resistivity during March 2010 in Balozhi, LatviaThe accurate measurement of soil resistivity and grounding system resistance is fundamental to electrical safety. However, geological and meteorological factors can have a considerable effect on the accuracy of conventional measurements and the validity of the measurement methods. This paper examines some aspects of grounding measurements and grounding system performance in the context of both geological and meteorological effects.We are reporting the results of grounding measurements using the 3-point method with ground resistivity tester type M416. The measurements were conducted during selected period from 2010 March 1 to March 31 in Balozhi, Latvia. We also noted that the resistivity of the upper layer significantly varied from a point to another, reflecting difference in water content in the upper soil layer due to local topography and other parameters.

Author(s):  
Abdulrehman Ali Al-Arainy ◽  
Nazar Hussain Malik ◽  
Muhammad Iqbal Qureshi ◽  
Yasink Khan

Grounding arrangement is very important to maintain safe and reliable operation of a power system and to ensure safety of the power apparatus and operating personnel. In Saudi Arabia, the weather is dry and the soil resistivity varies significantly from area to area because the geodetic terrain varies from sea shore to the arid desert and dry mountains. In most of the inland desert areas, the soil resistivity is significantly high and it is difficult to get low earth resistance with conventional methods. Therefore, an economical and efficient grounding system design of the earthing pit is necessary which can be achieved by using a low resistivity material (LRM). When such material is used, it is important to optimize the pit design. This paper presents different configurations of grounding pits commonly used with LRM applications. Different parameters that affect the grounding resistance are studied in detail and an optimized pit design is suggested that can effectively reduce the grounding resistance to an acceptable value. The suggested method can be readily used by engineers to obtain a good earthing pit configuration for efficient grounding of the power system components in high resistivity soils.


Author(s):  
Ahmed Thabet ◽  
Youssef Mobarak

The earthing system is very important to safe human’s lives and protect power system from normal and abnormal faults. High soil resistivity regions is the main problem of installation the earthing systems in electric power substations to pass the current through the earth's surface. This paper has been overcome on high soil resistivity regions by penetrating conductive nanoparticles to have extremely low grounding resistance. Moreover, it has been succeeded to examine the methodology of the proposed Nano-Tech earthing systems in case of single rods, multiple rods and grids. Also, it has been defined optimal types and concentrations of nanoparticles for Nano-Tech grounding system to provide excellence protection for electrical substations with respect to built beneath of soil where substation is located. A comparative study has been discussed and analyzed the results of traditional and nanotechnology grounding systems.


2015 ◽  
Vol 43 (19) ◽  
pp. 2189-2195
Author(s):  
Meludin Veledar ◽  
Samir Avdakovic ◽  
Zijad Bajramovic ◽  
Milan Savic ◽  
Koviljka Stankovic ◽  
...  

2016 ◽  
Vol 680 ◽  
pp. 361-364 ◽  
Author(s):  
Jun Du ◽  
Cheng Tang ◽  
Bo Jia ◽  
De Zhang ◽  
Qiang Miao

The steel fiber/graphite conductive concrete is applied in power system grounding. In high soil resistivity regions, the common methods for reducing the grounding resistance are not practical. It is difficult for grounding resistance of substations to meet the requirements of working earthing and safety earthing. In order to solve this problem, a steel fiber/graphite conductive concrete is developed in this paper. Steel fiber and graphite are added as conductive fillers. The long-term stability of the steel fiber/graphite conductive concrete is studied. The experiment results show that steel fiber/graphite conductive concrete not only maintains excellent conductivity, but also has good mechanical strength and corrosion resistance in 300 days.


2021 ◽  
Author(s):  
Yixiao Li ◽  
Tianguang Lv ◽  
Xin Zhao ◽  
Jiyan Liu ◽  
Wenjie Ju ◽  
...  

This chapter contains the factors affecting the soil resistivity and grounding resistance such as the soil moisture content, soil mineral content and soil temperature. It discusses the methods of measuring of soil resistivity and grounding resistance using Wenner method. Method to obtain the required samples for obtaining accurate site resistivity is presented. Soil resistivity measurement procedure is given in this chapter. The chapter contains three electrode method or fall-of-Potential method, dead earth method, and ground resistance testing existing systems using ‘Selective' Clamp-on-Measuring of high voltage transmission towers feet resistance. Methods of calculating the apparent soil resistivity of Multi-Layers, apparent soil resistivity of two layers and apparent soil resistivity of three layers are presented in this chapter.


2020 ◽  
Vol 1650 ◽  
pp. 032185
Author(s):  
Junyi Yang ◽  
Yi Ge ◽  
Zhenjian Xie ◽  
Junhui Huang ◽  
Hu Li ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3484 ◽  
Author(s):  
Jau-Woei Perng ◽  
Yi-Chang Kuo ◽  
Shih-Pin Lu

In this study, the concept of grounding systems is related to the voltage tolerance of the human body (human body voltage tolerance safety value). The maximum touch voltage target and grounding resistance values are calculated in order to compute the grounding resistance on the basis of system data. Typically, the grounding resistance value is inversely proportional to the laying depth of the grounding grid and the number of grounded copper rods. In other words, to improve the performance of the grounding system, either the layering depth of the grounding grid or the number of grounded copper rods should be increased, or both of them should be simultaneously increased. Better grounding resistance values result in increased engineering costs. There are numerous solutions for the grounding target value. Grounding systems are designed to find the combination of the layering depth of the grounding grid and the number of grounded copper rods by considering both cost and performance. In this study, we used a fuzzy algorithm on the genetic algorithm (GA), multi-objective particle swarm optimization (MOPSO) algorithm, Bees, IEEE Std. 80-2000, and Schwarz’s equation based on a power company’s substation grounding system data to optimize the grounding resistance performance and reduce system costs. The MOPSO algorithm returned optimal results. The radial basis function (RBF) neural network curve is obtained by the MOPSO algorithm with three variables (i.e., number of grounded copper rods, grounding resistance value, and grounding grid laying depth), and the simulation results of the electrical transient analysis program (ETAP) system are verified. This could be a future reference for substation designers and architects.


Sign in / Sign up

Export Citation Format

Share Document