Application of CAE Systems in Forming of Drawpieces with Use Rubber-Pad Forming Processes / Zastosowanie Systemów CAE W Projektowaniu Procesów Tłoczenia Z Użyciem Odkształcalnych Narzędzi

2012 ◽  
Vol 57 (4) ◽  
pp. 1179-1187
Author(s):  
D. Woźniak ◽  
M. Głowacki ◽  
M. Hojny ◽  
T. Pieja

This article shows example result of computer simulations supporting production process of bearing housing of aircraft engine. Verification of both deep drawing process project and tools design were carried out using finite element models implemented in eta/Dynaform 5.8.1 system and LS-DYNA solver. Wrinkling and fracture of the material were the main phenomena subjected to the investigation on the way of numerical analysis. A number of computer simulations were carried out in aim to analyze the deformation and strain distribution in the final product, as well as to eliminate the mentioned defects. In addition the comparison of results of both industrial tests and computer simulation was done.

2018 ◽  
Vol 14 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Karem Muhsin Younis ◽  
Adil Shbeeb Jabber ◽  
Mustafa Mohammed Abdulrazaq

Deep drawing process to produce square cup is very complex process due to a lot of process parameters which control on this process, therefore associated with it many of defects such as earing, wrinkling and fracture. Study of the effect of some process parameters to determine the values of these parameters which give the best result, the distributions for the thickness and depths of the cup were used to estimate the effect of the parameters on the cup numerically, in addition to experimental verification just to the conditions which give the best numerical predictions in order to reduce the time, efforts and costs for producing square cup with less defects experimentally is the aim of this study. The numerical analysis is used to study the effect of some parameters such as die profile radius, radial clearance between die and punch, blank diameter on the length and thickness  distributions on the cup, dynamic-explicit (ANSYS11) code based on finite element method is utilized to simulate the square deep drawing operation. Experiments were done for comparison and verification the numerical predictions. effective square cup with less defects and acceptable thickness distributions were produced in this study. It is concluded  the most thinning appear in the corner cup due to excessive stretching occur in this region and also it is found the cup thickness and height prediction by numerical analysis and in general in harmony with experimental analysis.


2010 ◽  
Vol 443 ◽  
pp. 104-109
Author(s):  
Jeerachai Supasuthakul ◽  
Peter D. Hodgson ◽  
Matthias Weiss ◽  
Chun Hui Yang

Analytical modelling of deep drawing process is of value in preliminary process design to illustrate the influence of major variables including friction and strain hardening on punch loads, cup dimensions and process limits. In this study, analytical models including theoretical solution and a series of finite element models are developed to account for the influences of process parameters including friction coefficient, tooling geometry and material properties on deep drawing of metal cups. The accuracy of both the theoretical and finite element solutions is satisfactory compared with those from experimental work.


Author(s):  
Naveen Viswanatha ◽  
Mark Avis ◽  
Moji Moatamedi

The surround and the spider of the loudspeaker suspension are modelled in ANSYS to carry out finite element analysis. The displacement dependent nonlinearities arising from the suspension are studied and the material and geometric effects leading to the nonlinearities are parameterised. The ANSYS models are simulated to be excited by a sinusoidal load and the results are evaluated by comparison with the results obtained by a physical model. The paper illustrates how practical models can be analysed using cost effective finite element models and also the extension of the models to experiment on various parameters, like changing the geometry for optimisation, by computer simulation.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 337 ◽  
Author(s):  
Jian Xing ◽  
Yan-yan Cheng ◽  
Zhuo Yi

To improve the effect of multi-point stretch forming of sheet metal, it is proposed in this paper to replace a fixed ball head with a swinging ball head. According to the multi-point dies with different arrangements, this research establishes finite element models of the following stretch forming, i.e., fixed ball heads with conventional arrangement, swinging ball heads with conventional arrangement, swinging ball heads with declining staggered arrangement, and swinging ball heads with parallel staggered arrangement, and then numerical simulation is performed. The simulation results show that by replacing a fixed ball head with a swinging ball head, the surface indentation of the part formed was effectively suppressed, the stress and tension strain distribution of the part formed was improved, and the forming quality was improved; the thickness of the elastic pad was reduced, the springback was reduced and the forming accuracy was improved; and when the ball head was applied to a multi-point die with staggered arrangement, a better forming result was achieved, where the best forming result was achieved in combining the swinging ball heads with the multi-point die with a parallel staggered arrangement. Forming experiments were carried out, and the experimental results were consistent with the trend of numerical simulation results, which verified the correctness of the numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document