scholarly journals Digital Finite Impulse Response Notch Filter with Non-Zero Initial Conditions, Based on an Infinite Impulse Response Prototype Filter

2012 ◽  
Vol 19 (4) ◽  
pp. 767-776 ◽  
Author(s):  
Sławomir Kocoń ◽  
Jacek Piskorowski

Abstract In this paper a concept of finite impulse response (FIR) narrow band-stop (notch) filter with non-zero initial conditions, based on infinite impulse response (IIR) prototype filter, is proposed. The filter described in this paper is used to suppress power line noise from ECG signals. In order to reduce the transient response of the proposed FIR notch filter, optimal initial conditions for the filter have been determined. The algorithm for finding the length of the initial conditions vector is presented. The proposed values of the length of initial conditions vector, for several ECG signals and interfering frequencies, are calculated. The proposed filters are tested using various ECG signals. Computer simulations demonstrate that the proposed FIR filters outperform traditional FIR filters with initial conditions set to zero.

2019 ◽  
Vol 9 (7) ◽  
pp. 1309
Author(s):  
Sławomir Kocoń ◽  
Jacek Piskorowski

In this paper a concept of the second order digital infinite impulse response narrow band-reject filter with reduced transient response is proposed. In order to suppress the transient response of the considered infinite impulse response (IIR) notch filter its pole radius is temporarily varied in time using the Bézier parametric curve. Computer simulations verifying the effectiveness of the proposed pole-radius-varying notch filter are presented and compared to the performance of the traditional time-invariant filter using ECG signals distorted by unwanted powerline interference.


Author(s):  
David Rivas-Lalaleo ◽  
Sergio Muñoz-Romero ◽  
Monica Huerta ◽  
Víctor Bautista-Naranjo ◽  
Jorge García-Quintanilla ◽  
...  

Author(s):  
G. Jovanovic-Dolecek ◽  
M. M-Alvarez ◽  
M. Martinez

This paper presents one simple method for the design of multiplierless finite Impulse response (FIR) filters by the repeated use of the same filter. The prototype filter Is a cascade of a second order recurslve running sum (RRS) filter, known as a cosine filter, and its corresponding expanded versions. As a result, no multipliers are requlred to implement this filter.


2001 ◽  
Author(s):  
Dirk Mayer ◽  
Sven Herold ◽  
Holger Hanselka

Abstract Both for active noise control (ANC) and active vibration control (AVC) the well known F-X-LMS-algorithm can be used. This approach requires a proper model of the path from the actuator to the error sensor, preferably received with an on-line identification. In the field of ANC adaptive finite impulse response (FIR) filters work well for this task, but for lightly damped mechanical systems with long impulse responses FIR filters with up to several thousand coefficients would have to be used. One alternative are adaptive IIR filters, but these can get unstable while adapting or the adapting process can get stuck in local minima. In this work, adaptive Kautz models are introduced, which need some a priori knowledge about the poles of the system. On the other hand, they represent an infinite impulse response while maintaining the transversal structure of the adaptive filter. This is reached by generalization of the FIR filter, for which the delay operator is substituted by discrete allpass filters, the Kautz filters. The adaptive filter bank is implemented by means of the straightforward LMS algorithm in the Matlab/Simulink environment. As an example, system identification with Kautz models and their usage in AVC for a simple mechanical system will be studied.


Author(s):  
Andrzej Handkiewicz ◽  
Mariusz Naumowicz

AbstractThe paper presents a method of optimizing frequency characteristics of filter banks in terms of their implementation in digital CMOS technologies in nanoscale. Usability of such filters is demonstrated by frequency-interleaved (FI) analog-to-digital converters (ADC). An analysis filter present in these converters was designed in switched-current technique. However, due to huge technological pitch of standard digital CMOS process in nanoscale, its characteristics substantially deviate from the required ones. NANO-studio environment presented in the paper allows adjustment, with transistor channel sizes as optimization parameters. The same environment is used at designing a digital synthesis filter, whereas optimization parameters are input and output conductances, gyration transconductances and capacitances of a prototype circuit. Transition between analog s and digital z domains is done by means of bilinear transformation. Assuming a lossless gyrator-capacitor (gC) multiport network as a prototype circuit, both for analysis and synthesis filter banks in FI ADC, is an implementation of the strategy to design filters with low sensitivity to parameter changes. An additional advantage is designing the synthesis filter as stable infinite impulse response (IIR) instead of commonly used finite impulse response (FIR) filters. It provides several dozen-fold saving in the number of applied multipliers.. The analysis and synthesis filters in FI ADC are implemented as filter pairs. An additional example of three-filter bank demonstrates versatility of NANO-studio software.


2021 ◽  
pp. 204-268
Author(s):  
Victor Lazzarini

This chapter now turns to the discussion of filters, which extend the notion of spectrum beyond signals into the processes themselves. A gentle introduction to the concept of delaying signals, aided by yet another variant of the Fourier transform, the discrete-time Fourier transform, allows the operation of filters to be dissected. Another analysis tool, in the form of the z-transform, is brought to the fore as a complex-valued version of the discrete-time Fourier transform. A study of the characteristics of filters, introducing the notion of zeros and poles, as well as finite impulse response (FIR) and infinite impulse response (IIR) forms, composes the main body of the text. This is complemented by a discussion of filter design and applications, including ideas related to time-varying filters. The chapter conclusion expands once more the definition of spectrum.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Wei Xu ◽  
Anyu Li ◽  
Boya Shi ◽  
Jiaxiang Zhao

We focus on the design of finite impulse response (FIR) multiple notch filters. To reduce the computational complexity and hardware implementation complexity, a novel algorithm is developed based on the mixture of the tuning of notch frequencies and the sparsity of filter coefficients. The proposed design procedure can be carried out as follow: first, since sparse FIR filters have lower implementation complexity than full filters, a sparse linear phase FIR single notch filter with the given rejection bandwidth and passband attenuation is designed. Second, a tuning procedure is applied to the computed sparse filter to produce the desired sparse linear phase FIR multiple notch filter. When the notch frequencies are varied, the same tuning procedure can be employed to render the new multiple notch filter instead of designing the filter from scratch. The effectiveness of the proposed algorithm is demonstrated through three design examples.


Sign in / Sign up

Export Citation Format

Share Document