Estimation of soil water evaporative loss after tillage operation using the stable isotope technique

2013 ◽  
Vol 27 (3) ◽  
pp. 257-264 ◽  
Author(s):  
M.A. Busari ◽  
F.K. Salako ◽  
C. Tuniz ◽  
G.M. Zuppi ◽  
B. Stenni ◽  
...  

Abstract Application of stable isotopes in soil studies has improved quantitative evaluation of evaporation and other hydrological processes in soil. This study was carried out to determine the effect of tillage on evaporative loss of water from the soil. Zero tillage and conventional tillage were compared. Suction tubes were installed for soil water collection at the depths 0.15, 0.50, and 1.0 m by pumping soil water with a peristaltic pump. Soil water evaporation was estimated using stable isotopes of water. The mean isotopic composition of the soil water at 0.15 m soil depth were -1.15‰ (δ18O) and -0.75‰ (δD) and were highly enriched compared with the isotopic compositions of the site precipitation. Soil water stable isotopes (δ18O and δD) were more enriched near the surface under zero tillage while they were less negative down the profile under zero tillage. This suggests an occurrence of more evaporation and infiltration under conventional then zero tillage, respectively, because evaporative fractionation contributes to escape of lighter isotopes from liquid into the vapour phase leading to enrichment in heavy isotopes in the liquid phase. The annual evaporation estimated using the vapour diffusion equation ranges from 46-70 and 54-84 mm year-1 under zero and conventional tillage, respectively, indicating more evaporation under conventional tillage compared with zero tillage. Therefore, to reduce soil water loss, adoption of conservation tillage practices such as zero tillage is encouraged.

2005 ◽  
Vol 85 (3) ◽  
pp. 453-461 ◽  
Author(s):  
M R Carter ◽  
D. Holmstrom ◽  
J B Sanderson ◽  
J. Ivany ◽  
R. DeHaan

Conservation tillage (CT) for potato crop land has been increasing in Atlantic Canada, but producers are concerned that fields managed in this way may be wet, slow to warm in spring, have increased debris at harvest, exhibit higher soil compaction and result in reduced yield. The objective of this study was to compare the effects of four tillage practices on potato yield, soil properties and weed growth over a 3-yr period. The four tillage practices were: (1 ) conventional autumn mouldboard plowing followed by spring secondary tillage; (2) spring mouldboard plowing followed by secondary tillage; (3) autumn chisel plowing followed by spring secondary tillage; and (4) spring CT. Tillage practices significantly affected soil water content (at both the 0- to 15-cm and 15- to 30-cm soil depths) with CT generally showing a greater soil water content prior to spring tillage in comparison to the other treatments. Soil temperature (at the 2- to 5-cm soil depth) prior to spring tillage was not influenced by tillage differences. Conservation tillage increased soil compaction at the 10- to 30-cm soil depth, but not to a level considered detrimental to root growth. Tillage treatments had no effect on amount of soil clods and plant debris passing over the harvester. Potato yield (range of 43 to 51 Mg ha-1) and quality were not adversely influenced by tillage practices. There were few treatment effects on individual weed species or groupings of annual, perennial and total weeds. Overall, CT can be a viable management alternative to conventional tillage because this practice does not negatively affect field management, potato yield, or soil quality. Key words: Conservation tillage, residue management, potato, soil temperature, soil moisture, tillage methods


Author(s):  
Rajesh Khan ◽  
Saikat Biswas ◽  
Champak Kumar Kundu ◽  
Kalyan Jana

In order to find out the efficacy of conservation tillage on yield and economics of fodder crops over conventional tillage in new alluvial zone of West Bengal, a field experiment was conducted at Central Research Farm, Gayeshpur, West Bengal, India during summer season of 2016 and 2017 comprising 3 tillage practices (T1: zero tillage, T2: minimum tillage, T3: conventional tillage) in main plot and 4 fodder crops (C1: maize, C2: sorghum, C3: rice bean, C4: cowpea) in subplot and replicated thrice in a split plot design. Mean data confirmed the superiority of conservation tillage over conventional tillage in improving soil status and thereby, crop performance. Cereal crop maize when grown under zero tillage produced highest green forage yield (42.33 t/ha), dry matter yield (7.84 t/ha). However, regarding crude protein yield, cowpea showed superiority over others specially when grown under zero tillage condition (1.071 t/ha). Mean data also stated that legume crops under conservation tillage remained economically more viable than cereal crops. Specifically, cultivation of cowpea under zero tillage condition was economically most profitable (B:C of 2.21) and therefore can be recommended in this region.


2018 ◽  
Vol 5 (01) ◽  
Author(s):  
ANIL KHIPPAL ◽  
KAMINI KUMARI S. Bhadauria ◽  
JASBIR SINGH

In Haryana (India) cotton is generally sown with conventional tillage practices witnesses poor germination and plant establishment. Poor plant stand is attributed by burning of emerging plants due to very high temperature at the time of planting, which is further worsen by crust formation due to pre-monsoon showers. Keeping these points in view, an experiment was conducted with farmers' participatory research mode in village Hajwana of Kaithal district. Cotton sown with zero tillage technique resulted in approximately five percent higher yield i.e. 136.3 kg ha-1 over conventional tillage. Mean returns over variable cost of all the three years were 10.8 percent i.e. Rs. 11794 ha-1 more in zero tillage over conventional tillage. Benefit: cost ratio were 3.86, 3.86 and 4.61 in conventional method of planting, bed planting and zero tillage technique, respectively. Zero tillage planting of cotton reduced fuel consumption by 93.4 % and 91.7 % compared to bed planting and conventional planting respectively.


2018 ◽  
Vol 6 (2) ◽  
pp. 164-168 ◽  
Author(s):  
Bibek Thapa ◽  
Keshab Raj Pande ◽  
Baburam Khanal ◽  
Santosh Marahatta

A field experiment was conducted to evaluate the effect of tillage practices, residue management and cropping system on soil properties at NMRP, Rampur, Chitwan from November 2015 to April 2016. The experiment was laid on Strip split design with combination of 12 different treatments i.e, zero tillage & conventional tillage as main plot in the strip, residue retention & residue removal as sub-plot factor and maize – wheat, maize + soybean – wheat & soybean – wheat cropping system as sub-sub plot factor. Three replications of the treatments were made. Soil sample before experiment and after harvest of wheat was taken (0-15cm). The experiment showed significant effect of zero tillage on organic carbon (2.169%) and on total soil nitrogen (0.112 %). Zero tillage with retention of residues is valuable tool for the conservation agriculture and helps in sustainability of soil however long-term research for the tillage management and residue retention should be conducted to highlight the major effects on change in properties of soil.Int. J. Appl. Sci. Biotechnol. Vol 6(2): 164-168 


Soil Research ◽  
2009 ◽  
Vol 47 (4) ◽  
pp. 362 ◽  
Author(s):  
Xirui Zhang ◽  
Hongwen Li ◽  
Jin He ◽  
Qingjie Wang ◽  
Mohammad H. Golabi

Conservation tillage is becoming increasingly attractive to farmers because it involves lower production costs than does conventional tillage. The long-term effects of sub-soiling tillage (ST), no tillage (NT), and conventional tillage (CT) on soil properties and crop yields were investigated over an 8-year period (2000–07). The study was conducted in a 2-crop-a-year region (Daxing) and a 1-crop-a-year region (Changping) of the Beijing area in China. At 0–0.30 m soil depth, water stability of macro-aggregates (>0.25 mm) was much greater for ST (22.1%) and NT (12.0%) than for CT in Daxing, and the improvements in Changping were 18.9% and 9.5%, respectively. ST and NT significantly (P < 0.05) improved aeration porosity by 14.5% and 10.6%, respectively, at Daxing and by 17.0% and 8.6% at Changping compared with CT treatment. Soil bulk density after 8 years was 0.8–1.5% lower in ST and NT treatments than in CT at both sites. Soil organic matter and available N and P followed the same order ST ≈ NT > CT at both sites. Consequently, crop yields in ST and NT plots were higher than in CT plots due to improved soil physical and chemical properties. Within the conservation tillage treatments, despite similar economic benefit, the effects on crop yields for ST were better than for NT. Mean (2000–07) crop yields for ST were 0.2% and 1.5% higher than for NT at Daxing and Changping, respectively. We therefore conclude that ST is the most suitable conservation tillage practice for annual 2-crop-a-year and 1-crop-a-year regions in the Beijing area.


1995 ◽  
Vol 35 (2) ◽  
pp. 223 ◽  
Author(s):  
BJ Radford ◽  
AJ Key ◽  
LN Robertson ◽  
GA Thomas

We compared 4 tillage practices (traditional, stubble mulch, reduced, no tillage) during 10 years under rainfed conditions on an alluvial soil in the semi-arid subtropics of central Queensland. In the final 4 years, responses to applied fertiliser nitrogen (N), sulfur (S), and zinc (Zn) were determined. We measured soil water storage, soil nitrate accumulation, grain yield (sorghum, wheat), grain protein content, and populations of soil macrofauna, with the aim of identifying soil-conserving practices that also produce high yields of high quality grain. Stubble mulch, reduced tillage, and no tillage all outyielded traditional tillage when soil fertility was adequate. With applied N, S, and Zn, the mean wheat yields from traditional, stubble mulch, reduced, and no tillage were 2.44, 3.32, 3.46, and 3.64 t/ha, respectively. The yield responses to tillage practices were due to increases in storage of soil water or efficiency of crop water use or both. Populations of soil macrofauna averaged (per m2) 19 (traditional tillage), 21 (stubble mulch), 33 (reduced tillage), and 44 (no tillage). The effect of the tillage practices on soil animal populations may be a factor contributing to the measured differences in soil water storage and water use efficiency. We conclude that conservation tillage practices can greatly increase grain yields, provided crop and fallow management practices are appropriate. Potential yield advantages are realised if crop establishment, crop nutrition; and control of weeds, bests, and diseases ark adequate.


1994 ◽  
Vol 74 (3) ◽  
pp. 411-420 ◽  
Author(s):  
Sylvia Borstlap ◽  
Martin H. Entz

Field trials were conducted over 4 site-years in southern Manitoba to compare the response of Katepwa wheat, Westar canola and Victoria field pea to zero tillage (ZT). The experimental design was a split plot with tillage system as the mainplot (ZT vs. conventional tillage (CT)) and crop species as the subplot. All crops received protection from insect, weed and disease pests. Tillage system had only a limited impact on crop dry matter accumulation or grain quality. Where differences were observed, crop performance was enhanced under ZT. Seasonal evapotranspiration (ET) was either reduced or unaffected by ZT, while ET efficiency (ETE: kg ha−1 mm−1 ET) was either increased or unchanged by the shift from CT to ZT. Higher ETE under ZT was attributed to less soil water evaporation. Significant tillage system × crop species (T × S) interactions for growth parameters, ET and ETE indicated that field pea often benefitted more than wheat or canola from ZT. A significant T × S interaction at one of the four sites indicated that water extraction between 30 and 90 cm was higher for pea and canola in the ZT compared with CT treatment, while soil water extraction by wheat was reduced under ZT. At a second site, lower ET for all three crops under ZT was attributed to reduced water use between 90 and 130 cm. Despite some effects of ZT on crop growth and water use, no significant tillage, T × S, or site × tillage interactions were observed for grain yield. It was concluded that under the conditions of this study (i.e. precipitation and temperature conditions close to the long-term average), Westar canola, Victoria field pea and Katepwa wheat were, for the most part, equally suited to ZT production. Key words: Soil water extraction, evapotranspiration efficiency, crop quality, grain yield, canopy development


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Reji P. Mathew ◽  
Yucheng Feng ◽  
Leonard Githinji ◽  
Ramble Ankumah ◽  
Kipling S. Balkcom

Soil management practices influence soil physical and chemical characteristics and bring about changes in the soil microbial community structure and function. In this study, the effects of long-term conventional and no-tillage practices on microbial community structure, enzyme activities, and selected physicochemical properties were determined in a continuous corn system on a Decatur silt loam soil. The long-term no-tillage treatment resulted in higher soil carbon and nitrogen contents, viable microbial biomass, and phosphatase activities at the 0–5 cm depth than the conventional tillage treatment. Soil microbial community structure assessed using phospholipid fatty acid (PLFA) analysis and automated ribosomal intergenic spacer analysis (ARISA) varied by tillage practice and soil depth. The abundance of PLFAs indicative of fungi, bacteria, arbuscular mycorrhizal fungi, and actinobacteria was consistently higher in the no-till surface soil. Results of principal components analysis based on soil physicochemical and enzyme variables were in agreement with those based on PLFA and ARISA profiles. Soil organic carbon was positively correlated with most of the PLFA biomarkers. These results indicate that tillage practice and soil depth were two important factors affecting soil microbial community structure and activity, and conservation tillage practices improve both physicochemical and microbiological properties of soil.


2013 ◽  
Vol 726-731 ◽  
pp. 3832-3836
Author(s):  
Song Wei Jia

For the last decades, because of increasing attention to global change, the carbon cycle in the terrestrial ecosystem has become a hotspot problem for every country. It has 1.6 Pg/a C to release into atmosphere because of the irrational land-use, quickening the step of global warming trend. But agricultural soil has the double-sword effects. If improper soil tillage practices are adopted, agricultural soil may become the source of carbon dioxide in the atmosphere. And if adopting effective management measurement and scientific tillage technology, agricultural soil may become carbon sink. This paper reviewed the effects of conventional tillage and conservation tillage on soil organic carbon (SOC), and found that conservation tillage has a huge potential for sequestrating organic carbon compared with conventional tillage. Finally, the important significance of agriculture soil carbon sequestration was discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document