scholarly journals Effect of Soil Water Content on Carbon Dioxide Flux at a Sparse-Canopy Forest in the Canadian Boreal Ecosystem

2005 ◽  
Vol 61 (3) ◽  
pp. 131-141 ◽  
Author(s):  
Hirokazu IWASHITA ◽  
Nobuko SAIGUSA ◽  
Shohei MURAYAMA ◽  
Harry MCCAUGHEY ◽  
Andy BLACK ◽  
...  
2020 ◽  
Vol 7 (3) ◽  
pp. 529-540
Author(s):  
Deepa Dhital ◽  
◽  
Suman Prajapati ◽  
Sanu Raja Maharjan ◽  
Toshiyuki Ohtsuka ◽  
...  

Prevailing climate change is expected due to carbon dioxide emission to the atmosphere through soil respiration and perhaps the alteration in the terrestrial carbon cycle. The measurements to establish the effect and sensitivity of soil temperature, soil water content and plant biomass on soil respiration was performed in the sub-tropical grassland located in Central Nepal. Field measurements of soil respiration was conducted by using the closed-chamber method, and soil temperature, soil water content and plant biomass were monitored in the years 2015 and 2016. The soil respiration showed positive significant exponential function which accounted for 74.6% (R2=0.746, p<0.05) of its variation with the soil temperature. The temperature sensitivity of soil respiration, Q10 value obtained was 2.68. Similarly, soil respiration showed a positive significant exponential function that accounted for 37.2% (R2=0.372, p<0.05) of its variation with the soil water content. Remarkable seasonal and monthly variations were observed in soil respiration, soil temperature and soil water content, and the plant biomass as well followed the seasonal trend in variation of the soil respiration. Average soil respiration during measurements period was observed 325.51 mg CO2 m-2 h-1 and the annual soil respiration of the grassland in the years 2015 and 2016 was estimated 592.35 g C m-2 y-1. The study confirmed that soil temperature is the most influential primary factor in controlling soil respiration along with the soil water content and plant biomass. This research indicates that through emissions under the increasing temperature and precipitation, in the changing climate, the sub-tropical grassland could be an additional source of carbon dioxide to the atmosphere that might spur risk for further warming.


2002 ◽  
Vol 8 (3) ◽  
pp. 289-298 ◽  
Author(s):  
B. A. Hungate ◽  
M. Reichstein ◽  
P. Dijkstra ◽  
D. Johnson ◽  
G. Hymus ◽  
...  

Author(s):  
M.C.H.Mouat Pieter Nes

Reduction in water content of a soil increased the concentration of ammonium and nitrate in solution, but had no effect on the concentration of phosphate. The corresponding reduction in the quantity of phosphate in solution caused an equivalent reduction in the response of ryegrass to applied phosphate. Keywords: soil solution, soil water content, phosphate, ryegrass, nutrition.


2010 ◽  
Vol 59 (1) ◽  
pp. 157-164 ◽  
Author(s):  
E. Tóth ◽  
Cs. Farkas

Soil biological properties and CO2emission were compared in undisturbed grass and regularly disked rows of a peach plantation. Higher nutrient content and biological activity were found in the undisturbed, grass-covered rows. Significantly higher CO2fluxes were measured in this treatment at almost all the measurement times, in all the soil water content ranges, except the one in which the volumetric soil water content was higher than 45%. The obtained results indicated that in addition to the favourable effect of soil tillage on soil aeration, regular soil disturbance reduces soil microbial activity and soil CO2emission.


Author(s):  
Justyna Szerement ◽  
Aleksandra Woszczyk ◽  
Agnieszka Szyplowska ◽  
Marcin Kafarski ◽  
Arkadiusz Lewandowski ◽  
...  

2014 ◽  
Vol 22 (3) ◽  
pp. 300-307
Author(s):  
Meijun ZHANG ◽  
Wude YANG ◽  
Meichen FENG ◽  
Yun DUAN ◽  
Mingming TANG ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 549f-550
Author(s):  
Mongi Zekri ◽  
Bruce Schaffer ◽  
Stephen K. O'Hair ◽  
Roberto Nunez-Elisea ◽  
Jonathan H. Crane

In southern Florida, most tropical fruit crops between Biscayne and Everglades National Parks are irrigated at rates and frequencies based on experience and observations of tree growth and fruit yield rather than on reliable quantitative information of actual water use. This approach suggests that irrigation rates may be excessive and could lead to leaching of agricultural chemicals into the groundwater in this environmentally sensitive area. Therefore, a study is being conducted to increase water use efficiency and optimize irrigation by accurately scheduling irrigation using a very effective management tool (EnviroScan, Sentek Environmental Innovations, Pty., Kent, Australia) that continuously monitors soil water content with highly accurate capacitance multi-sensor probes installed at several depths within the soil profile. The system measures crop water use by monitoring soil water depletion rates and allows the maintenance of soil water content within the optimum range (below field capacity and well above the onset of plant water stress). The study is being conducted in growers' orchards with three tropical fruit crops (avocado, carambola, and `Tahiti' lime) to facilitate rapid adoption and utilization of research results.


Sign in / Sign up

Export Citation Format

Share Document