scholarly journals Yield Stability of Soybean Genotypes in Tropical Environments based on Genotype and Genotype-by-Environment Biplot

2019 ◽  
Vol 46 (3) ◽  
pp. 231-239 ◽  
Author(s):  
Ayda Krisnawati ◽  
And Mochammad Muchlish Adie

Genotype × environment interaction is universal phenomenon when different genotypes are tested in a number of environments. The objective of this experiment was to determine the seed yield stability of soybean genotypes. Seven soybean genotypes and two check cultivars were evaluated at eight soybean production centers during the dry season 2015. Stability analysis on seed yield was based on the GGE biplot method. The combined analysis showed that yield and yield components were significantly affected by genotype (G), environments (E), and genotype × environment interaction (GEI), except for number of filled pods. The highest yield was G6 (3.07 ton ha-1), followed by G7 (2.93 ton ha-1). The “which-won-where” polygon mapping resulted two mega-environments. The best genotype for the first mega-environment was G1 (G511H/Anjasmoro//Anjasmoro-2-8) at E5 (Pasuruan2); and the second one was G6 (G511 H/Anj//Anj///Anj////Anjs-6-7) at E1 (Nganjuk), E2 (Mojokerto), E3 (Blitar), E4 (Pasuruan1), E6 (Jembrana), E7 (Tabanan), and E8 (Central Lombok). The G7 (G511 H/Anjasmoro-1-4-2) was closest to ideal genotype as indicated by relatively stable and produced high yield across environments. The analysis of multi-environment trials data using GGE is useful for determining mega-environment analysis and stability of genotype which focusing on overall performance to identify superior genotypes.Keywords: GE interaction, GGE biplot, Glycine max, seed yield

Author(s):  
Anuradha Bhartiya ◽  
J. P. Aditya ◽  
Kamendra Singh ◽  
Pushpendra Pushpendra ◽  
J. P. Purwar ◽  
...  

The investigation was carried out to study Genotype × Environment (G×E) interaction for seed yield in 36 soybean genotypes including check PS1092 over 3 diverse environments represented by different altitudes in Uttarakhand. Grain yield performances of soybean genotypes were evaluated during Kharif 2013 season using a randomized complete block design. The AMMI analysis indicated that environment, genotypes and genotype by environment interactions had significantly affected seed yield and accounted for 9.76, 28.97 and 47.55% of the total variation, respectively. GGE biplot clearly displayed interrelationships between test locations as well as genotypes and facilitated visual comparisons based on Principal Component Analysis (PCA). The first two principal components PCI and PCII were used to create a two-dimensional GGE biplot that accounted for 45.68 and 38.88% variations respectively and based on discriminating and representative ability, E2 (Majhera) was most suitable location for selecting generally adapted genotypes. Soybean genotype C1 (PS1539) was identified as ideal genotype with high yield and low G×E interaction i.e. high stability.


2020 ◽  
Vol 51 (5) ◽  
pp. 1337-1349
Author(s):  
Motahhari & et al.

This study was aimed to asses seed yield performances of 16 rapeseed genotypes  in randomized complete block designs (RCBD) with three replications at four Agricultural Research Stations of cold and mid-cold regions over two years in Iran (2015-2017). GGE biplot analysis indicated that the first two components explained 83% of seed yield variations. Genotype, location and their interaction explained 18%, 52% and 30%of the total GE variation, respectively. In this research, a graphically represented GGE biplot analysis enabled selection of stable and high-yielding genotypes for all investigated locations, as well as genotypes with specific adaptability. The GGE biplot analysis was adequate in explaining GE interaction for seed yield in rapeseed. It can be concluded that genotypes G2, G4 and G13 had the highest mean seed yield and stability in four investigated locations. For specific adaptability, G13 was recommended for Isfahan, Karaj and Kermanshah and G4 for Mashhad.


Author(s):  
P. Jagan Mohan Rao ◽  
N. Sandhyakishore ◽  
S. Sandeep ◽  
G. Neelima ◽  
A. Saritha ◽  
...  

Background: The genotype × environment interaction greatly influences the success of breeding and in multi-location trials complicates the identification of superior genotypes for a single location, due to magnitude of genotype by location interaction are often greater than genotype by year interaction. This necessitates genotype evaluation in multi environments trials in the advanced stages of selection. Methods: Nine elite pigeonpea genotypes of mid-early duration were evaluated in six diverse locations in randomized complete block design with three replications during kharif, 2019 to ascertain the stable genotypes, environments discrimination and genotype by environment crossovers using AMMI and GGE biplot stability models. Result: The results in the present investigation revealed that first two principal components explained 73.4% of variation interaction, while, 80.50% in GGE biplot. Both the models identified WRGE-126 (G6) as stable performer with high yield (1733 kg ha-1) and among the locations Tandur (E1) measured as the ideal environment. Whereas, the environments, Adilabad (E3) and Warangal (E4) were observed representative with better discriminating ability.


2008 ◽  
Vol 88 (6) ◽  
pp. 1099-1107 ◽  
Author(s):  
Ian Affleck ◽  
J. Alan Sullivan ◽  
R. Tarn ◽  
D. E. Falk

Colour is an important character in the processing of potatoes for French fries. French fry colour is closely associated with sugar content in the tuber. This study examines the stability of yield, sugar content and French fry colour for eight potato cultivars and advanced selections in four environments. Stability was determined using three approaches based on the Eberhart-Russell, Tai and GGE Biplot analyses. The GGE Biplot analysis provided a better characterization of stability than the other two analyses. The most stable and best performing genotypes for both French fry colour and total sugars were Russet Burbank and Umatilla Russet. Cal White had high yield and yield stability but had average stability for poor (dark) French fry colour. The GGE biplot analysis was able to identify mega-environments and those environments which optimized differentiation between genotypes. Both factors are important for the optimization of resources for testing new genotypes. Stability for quality factors in potato can be as important or more important than yield for some processing uses. In this study, genotypes with stability for sugar content and French fry colour were identified and these may be used as parents in breeding for stability. Key words: Potato, yield stability, quality, French fry


2019 ◽  
Vol 3 (2) ◽  
pp. 72
Author(s):  
Ayda Krisnawati ◽  
M. Muchlish Adie

Soybean in Indonesia is grown in diverse agro-ecological environments. The performance of soybean yield often varies due to significant genotype × environment interaction (GEI), therefore the yield stability of performance is an important consideration in the breeding program. The aim of the research was to exploring the GEI pattern and yield stability of soybean promising lines in the tropics using GGE (Genotype and Genotype by Environment Interaction) biplot method. A total of 16 soybean promising lines were evaluated in ten environments during 2016 growing season. The experiment was arranged in a randomized completely block design with four replicates. The analysis of variance revealed that environments (E) explained the highest percentage of variation (51.45%), meanwhile the genotypes (G) and genotype × environment interactions (GEI) contributed for 3.24%, and 14.59% of the total variation, respectively. Seed yield of 16 soybean promising lines ranged from 2.41 to 2.83 t.ha-1 with an average of 2.74 t.ha-1. Joint effects of genotype and interaction (G+GE) which was partitioned using GGE biplot analysis showed that the first two components were significant, explaining 60.88% (37.89% PC1 and 22.98% PC2) of the GGE sum of squares. Indonesia can be divided into at least four putative mega environments for soybean production. The GGE biplot identified G10 as high yielding and stable promising line, thus recommended to be developed in multi-environment in tropical regions of Indonesia.


2021 ◽  
Vol 3 (1) ◽  
pp. 112-118
Author(s):  
İlhan Subaşı ◽  
Dilek Başalma

Genotype-environment interaction is a significant factor for finding and selecting stable and productive varieties in safflower breeding programs. This study was conducted at three locations over two years (2016-2017) to determine the extent of genotype by environment (GE) interaction in seed and oil yield. 20 safflower lines and cultivars were evaluated in terms of stability in 3 environments. Considering the stability and performance, the most suitable genotypes were determined as Remzibey-05 and Genotype-125 in seed yield, Genotype-8 and Genotype-155 in oil yield. In terms of stability and performances of genotypes, the environment of Ikizce 2017 (E4) was prominent. Correlation analysis among parametric and nonparametric features was given only for seed yield. The following stability parameters were calculated: the coefficient of variation (CV), regression constant (ai), regression coefficient (bi), mean deviation squares from regression (S2di), coefficient of determination (Ri2), stability variance (σi2), ecovalance value (Wi), stability index (Pi) and as nonparametric stability measures Si(1) and Si(2) values. This analysis indicated that seed yield was significantly positively correlated only with Pi (P<0.01). CV showed a positively significant correlation with ai. S2di and ri2 had a positive association with Ri2, σi2, Wi, Pi, Si(1), Si(2), and between each other.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ghislain Kanfany ◽  
Mathieu Anatole Tele Ayenan ◽  
Yedomon Ange Bovys Zoclanclounon ◽  
Talla Kane ◽  
Malick Ndiaye ◽  
...  

Identification of highly performing varieties under Senegalese environment is crucial to sustain rice production. Genotype-environment interaction and stability performance on the grain yield of ten upland rice genotypes were investigated across 11 environments in Senegal during the rainy seasons of 2016 and 2017 to identify adapted varieties. The experiment was conducted using a randomized complete block design with three replications at each environment. Data on grain yield were recorded and analyzed using the additive main effects and multiplicative interaction (AMMI) model. The combined analysis of variance revealed that the grain yield was significantly affected by environment (67.9%), followed by genotype × environment (G × E) interaction (23.6%) and genotype (8.5%). The first two principal component axes were highly significant with 37.5 and 26% of the total observed G × E interaction variation, respectively. GGE biplot grouped the environments into four potential megaenvironments. Based on the yield stability index parameter and ranking GGE biplot, NERICA 8 and ART3-7-L9P8-1-B-B-1 were stable and high-yielding varieties compared to the local check NERICA 6. These varieties should be proposed for cultivation in order to sustain the rice production in the southern part of the groundnut basin of Senegal and used as parental lines in rice breeding program for grain yield improvement.


Author(s):  
M. A. Ahmed ◽  
Kh. A. Morad ◽  
M. A. Attia ◽  
Zeinab E. Ghareeb

Aims: This study was conducted to investigate the nature of genotypes-environments interaction (GEI) and identify the most stable sunflower hybrids that can give high seed yield with high oil yield under a wide range of environmental conditions in Egypt. Place and Duration of Study: Fifteen hybrids were evaluated across three years (2017 to 2019) and three locations (Giza, Ettay El-Barod and Shandaweel). Study Design: The experiments were laid out in Randomized Complete Block Design (RCBD) with three replications. Methodology: Analysis of variance, some stability methods as additive main effects and multiplicative interaction (AMMI) and genotype main effects and genotype-by-environment interaction effects (GGE-biplot) were conducted. Results of stability indices were ranked as AMMI Stability Value (ASV), yield stability (YSI) and rank-sum (RSI) and heritability was estimated. Results: Combined analysis revealed that GEI was highly significant, indicating the possibility of selection for stable ones. AMMI analysis confirmed that the seed yield performance of sunflower hybrids was largely influenced by the environment. On the contrary, environments recorded less impact on oil yield as compared to the effect of hybrids (genetics). Then, heritability estimate of oil yield trait (93.86%) was higher than the seed yield one (31.10%). Indices of YSI and RSI presented that hybrids (H15, H7 and H11) and (H7, H8 and H15) were the best stable promising ones in seed and oil yield, respectively. GGE-biplot analysis indicated that hybrids (H15, H7, H4 and H11) and (H7, H15, H8 and H15) were considered as the most ideal for seed and oil yield, respectively whereas Shandweel was the ideal environment for both. Conclusion: Therefore, all analyses agreed on hybrids H15, H7 and H11 were considered as the most desirable and stable ones. These hybrids can be recommended for wider cultivation due to better seed and oil yield with stable performance across the test environments.


Sign in / Sign up

Export Citation Format

Share Document