scholarly journals Pengaruh Frekuensi Pengolahan Tanah dan Pupuk Kompos terhadap Sifat Fisik Tanah dan Hasil Jagung

2019 ◽  
Vol 9 (2) ◽  
pp. 154
Author(s):  
I PUTU DHARMA ◽  
I NYOMAN PUJA

The Effect of Soil Tillages Frequency and Compost Fertilizer on Soil Physical Properties and Corn Yields. The aims of this research is to determine of effect soil tillage frequency and compost fertilizer on soil physical properties and corn yields. The method was used a Randomized Block Design (RBD), factorial consisting of two factors, namely: Soil Tillages Frequency (T) consists of 3 levels, namely: T0 = no tillage; T1 = if one time and T2 = if twice. Compost Fertilizer (K) consists of 3 levels, namely: K0 = Without compost, K1 = 5 tons compost/ha and B2 = 10 tons compost/ha. Combination treatment into 9 treatments, namely T0K0 , T0K1, T0K2, T1K0, T1K1, T1K2, T2K0, T2K1, T2K2. and each treatment was repeated 3 times, so there were 27 research plots.The results showed that the soil tillage frequency and compost fertilizer had no significant effect on the soil physical properties and corn yields. Twice soil tillage frequency resulted bulk density, porosity, soil moisture content and dry corn yields respectively 1.01 g/cm3, 60.98%, 37.31% and 0.83 kg/m2, and not significant different compared with no tillage which is 1.03 g/cm3, 60.43%, 36.57% and 0.81 kg/m2. Addition of 10 tons compost/ha resulted bulk density, porosity, soil moisture content and dry corn yield respectively 0.99 g/cm3, 61.75%, 38.21% and 0.86 kg/m2, and not significant different compared with without compost fertilizer which is 1.06 g/cm3, 59.40%, 36.44% and 0.80 kg/m2.

2018 ◽  
Vol 31 (1) ◽  
pp. 48-58
Author(s):  
Aqeel J. Nassir

An experiment was conducted in fields of Agriculture college, University  of Basrah. The experiment was designed with split-spilt plots in Complete Randomized Blocks Design Treatments included three types of moldboard plows: helical,  semi digger and general –purpose, three soil moisture content levels (10.23,16.47 and 24.68%), and four tractor speed of 0.41, 0.56, 0.86 and 1.21 m sec -1  . The soil  physical properties were determined after plowing soil by using three types of moldboard plow. The results showed that there was significant effect of moldboard plow types, soil moisture content and tractor speed on soil physical properties including bulk density, soil porosity, soil penetration resistance and pulverization ratio. Results also indicated that the effect of interaction among plow types, soil moisture content and tractor speed was significantly on soil penetration resistance and pulverization ratios while it had not significantly effect on bulk density, soil porosity. In general, soil physical properties, had been improved when using high tractor speed and moderate soil moisture content whereas optimal operation was obtained when using general-purpose plow type and  high tractor speed of 1.12 m sec -1 and soil moisture content of 16.47% where this combination gives low bulk density (0.96Mg m-3), high soil porosity (63.90%) high soil pulverization ratio (74%) and low soil penetration resistance (623.47 kN m-2).


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Riziki Mwadalu ◽  
Benson Mochoge ◽  
Benjamin Danga

The effect of biochar on tree growth and soil physical properties as indicated in literature is still outstanding. Information on the effect of biochar on tree growth is limited, and the available literature has recorded conflicting results. Therefore, a field experiment using Casuarina equisetifolia (Casuarina) as the test crop under different biochar rates was conducted. Four biochar rates (0, 2.5, 5.0, and 7.5 t ha−1) were used as treatments, each replicated three times. Generally, biochar-amended plots recorded higher Casuarina height, collar diameter, and diameter at breast height (DBH). The application of biochar at 7.5 t ha−1 resulted in higher Casuarina height of up to 20.2% compared to the control. On the contrary, application of biochar at 2.5 t ha−1 recorded higher collar diameter of up to 30.2% compared to the control. Generally, there was a decrease in soil bulk density with biochar application. Bulk density decreased linearly with increasing biochar application rates with biochar application rate of 7.5 t ha−1 recording the lowest bulk density (0.99 g cm−3). There was a decrease in bulk density of up to 25% compared to the control with the biochar application rate of 7.5 t ha−1. Biochar application rate of 7.5 t ha−1 also recorded the highest soil moisture content across the assessment periods. Biochar-amended plots recorded higher soil moisture content than the untreated control. There was increase in soil moisture content following biochar application of up to 108% with the application of biochar at 7.5 t ha−1 compared to the untreated control. The increase in soil moisture content with biochar application can be attributed to biochar’s porous nature and large surface area. These results suggest that the use of biochar has the potential of enhancing Casuarina growth while enhancing soil physical properties by decreasing bulk density and enhancing soil moisture storage.


2020 ◽  
Vol 15 (2) ◽  
pp. 68-74
Author(s):  
Paardensha Ivy Chinir ◽  
Manoj Dutta ◽  
Rizongba Kichu ◽  
Sewak Ram

A field experiment was conducted to evaluate the effect of forest litter and its time of incorporation on soil physical properties. The study showed that plots with forest litter incorporated at 45 DBS (Days Before Sowing) had significantly higher soil moisture content as compared to those incorporated at 30 DBS after 30 and 60 DAS. However, the difference in the time of incorporation had no significant effect on soil moisture content at 90 DAS. At 30 DAS, application of forest litter @ 6 t ha-1 and 9 t ha-1 significantly increased the soil moisture content at a rate of 4.11 and 11.42 per cent, respectively over control. At 60 DAS, application of forest litter @ 3 t ha-1, 6 t ha-1 and 9 t ha-1 significantly increased the soil moisture content at the rate of 15.05, 17.26 and 25.65 per cent, respectively over control. At 90 DAS, a trend was noticed which showed that soil moisture content significantly increased at a progressive rate with each increase in the dose of forest litter application. At 90 DAS, the addition of forest litter @ 3 t ha-1, 6 t ha-1and 9 t ha-1 increased the soil moisture content @ 10.16, 17.84 and 22.20 per cent, respectively over control. The plots with forest litter incorporated at 45 DBS had significantly higher hydraulic conductivity, per cent aggregates and mean weight diameter as compared to those incorporated at 30 DBS. However, the difference in the time of incorporation i.e., at 30 and 45 DBS had no significant effect on bulk density, particle density and water holding capacity. Incorporation of forest litter @ 3 t ha-1, 6 t ha-1 and 9 t ha-1 significantly decreased the bulk density at the rate of 3.67, 8.65 and 14.14 per cent; while particle density increased at the rate of 2.59, 3.42 and 6.61 per cent, respectively when compared to control. The addition of forest litter @ 3 t ha-1, 6 t ha-1 and 9 t ha-1 resulted in a significant increase in water holding capacity and hydraulic conductivity at a rate of 3.72, 4.65 and 6.77 per cent and 24.13, 32.30 and 41.73 per cent, respectively over control. Further, the application of forest litter @ 3t ha-1, 6 t ha-1 and 9 t ha-1 significantly increased the per cent aggregate and mean weight diameter of the soil @ 1.77, 3.49 and 6.58 per cent 17.31, 26.28 and 41.35 per cent, respectively over control. The study revealed that incorporating 9 t ha-1 of forest litter at 45 DBS had the most beneficial effect on soil physical properties.


Helia ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Peter Yankov ◽  
Miglena Drumeva

Abstract The investigation was carried out during 2014–2016 in the land of General Toshevo town in the South Dobrudzha region on slightly leached chernozem soil type. The effect of the types of soil tillage for sunflower given bellow was followed: ploughing at 24–26 cm, chisel-plough at 24–26 cm, disking with disk harrow at 10–12 cm and direct sowing (no-tillage) on the soil moisture content. Based on bulk density, wilting point and the determined soil moisture content the plant-available water was calculated. The additional soil tilths of the areas subjected to ploughing, chisel-ploughing and disking with disc harrow included double spring pre-sowing cultivation with harrowing. To destroy the emerging weeds in the variant with direct sowing, a total herbicide was applied. The soil moisture content was evaluated during three main stages of sunflower development: emergence, flowering and technical maturity. The investigated parameter was determined for each of the studied layers – 0–10, 10–20, 20–30, 30–40 and 40–60 cm. In years with normal amounts of rainfalls, no significant differences in the soil moisture under the different ways of soil tillage were observed. Conventional ploughing and tillage without turning of the soil layer contributed to accumulation of more moisture and to higher moisture storage down the soil profile under heavy and intensive rainfalls. Tillage without turning of the soil layer, minimal and no tillage maintained more and better soil moisture in years with limited precipitation and in periods of drought.


2012 ◽  
Vol 29 (7) ◽  
pp. 933-943 ◽  
Author(s):  
Weinan Pan ◽  
R. P. Boyles ◽  
J. G. White ◽  
J. L. Heitman

Abstract Soil moisture has important implications for meteorology, climatology, hydrology, and agriculture. This has led to growing interest in development of in situ soil moisture monitoring networks. Measurement interpretation is severely limited without soil property data. In North Carolina, soil moisture has been monitored since 1999 as a routine parameter in the statewide Environment and Climate Observing Network (ECONet), but with little soils information available for ECONet sites. The objective of this paper is to provide soils data for ECONet development. The authors studied soil physical properties at 27 ECONet sites and generated a database with 13 soil physical parameters, including sand, silt, and clay contents; bulk density; total porosity; saturated hydraulic conductivity; air-dried water content; and water retention at six pressures. Soil properties were highly variable among individual ECONet sites [coefficients of variation (CVs) ranging from 12% to 80%]. This wide range of properties suggests very different behavior among sites with respect to soil moisture. A principal component analysis indicated parameter groupings associated primarily with soil texture, bulk density, and air-dried water content accounted for 80% of the total variance in the dataset. These results suggested that a few specific soil properties could be measured to provide an understanding of differences in sites with respect to major soil properties. The authors also illustrate how the measured soil properties have been used to develop new soil moisture products and data screening for the North Carolina ECONet. The methods, analysis, and results presented here have applications to North Carolina and for other regions with heterogeneous soils where soil moisture monitoring is valuable.


Author(s):  
Y. A. Unguwanrimi ◽  
A. M. Sada ◽  
G. N. Ugama ◽  
H. S. Garuba ◽  
A. Ugoani

Draft requirements of two animal – drawn (IAR) weeders operating on loam soil were determined in the study. The implements include a straddle row weeder and an emcot attached rotary weeder evaluated under the same soil conditions, using a pair of white Fulani breed of oxen. The animal draft requirement was first estimated from the animal ergonomics measurements. Using area of 0.054 hectare as experimental plot for each implement the draft requirement of each implement was investigated after taking soil samples for soil moisture content and bulk density determinations. The implements tested showed variation in their average draft requirement. The straddle row weeder had the highest value of 338.15 N respectively while the emcot attached rotary weeder had the lowest value of 188.12 N with 47.03%, respectively. The average soil moisture contents and bulk density were 13.0% and 1.46%/cm3, respectively.


2020 ◽  
Vol 77 (2) ◽  
Author(s):  
Jori Uusitalo ◽  
Jari Ala-Ilomäki ◽  
Harri Lindeman ◽  
Jenny Toivio ◽  
Matti Siren

Abstract Key message Rut depth in fine-grained boreal soils induced by an 8-wheeled forwarder is best predicted with soil moisture content, cumulative mass of machine passes, bulk density and thickness of the humus layer. Context Forest machines are today very heavy and will cause serious damage to soil and prevent future growth if forest operations are carried out at the wrong time of the year. Forest operations performed during the wettest season should therefore be directed at coarse-grained soils that are not as prone to soil damage. Aims The study aimed at investigating the significance of the most important soil characteristics on rutting and developing models that can be utilized in predicting rutting prior to forest operations. Methods A set of wheeling tests on two fine-grained mineral soil stands in Southern Finland were performed. The wheeling experiments were conducted in three different periods of autumn in order to get the largest possible variation in moisture content. The test drives were carried out with an 8-wheeled forwarder. Results Soil moisture content is the most important factor affecting rut depth. Rut depth of an 8-wheeled forwarder in fine-grained boreal soil is best predicted with soil moisture content, cumulative mass of machine passes, bulk density and thickness of the humus layer. Conclusion The results emphasize the importance of moisture content on the risk of rutting in fine-grained mineral soils, especially with high moisture content values when soil saturation reaches 80%. The results indicate that it is of high importance that soil type and soil wetness can be predicted prior to forest operations.


2011 ◽  
Vol 6 (No. 2) ◽  
pp. 73-82 ◽  
Author(s):  
S.E. Obalum ◽  
J.C. Nwite ◽  
J. Oppong ◽  
C.A. Igwe ◽  
T. Wakatsuki

One peculiar feature of the inland valleys abundant in West Africa is their site-specific hydrology, underlain mainly by the prevailing landforms and topography. Development and management of these land resources under the increasingly popular sawah (a system of bunded, puddled and levelled rice field with facilities for irrigation and drainage) technology is a promising opportunity for enhancing rice (Oryza sativa L.) production in the region. Information on the variations in selected soil physical properties as influenced by the prevailing landforms may serve as a useful guide in site selection. This is of practical importance since majority of the inland valleys are potentially unsuitable for sawah development and most farmers in the region are of low technical level. Three landforms (river levee, elevated area and depressed area) were identified within a sawah field located in an inland valley at Ahafo Ano South District of Ghana. Each of these landforms was topsoil-sampled along on identified gradient (top, mid and bottom slope positions). Parameters determined included particle size distribution, bulk density, total porosity and field moisture content. The soil is predominantly clayey. There were no variations in the particle size distribution among the slope positions in the river levee. Overall, the river levee had lower silt content than the elevated and the depressed landforms. The bulk density, total porosity, and gravimetric moisture content indicated relative improvements only in the depressed area in the order, bottom &gt; mid &gt; top slope. Irrespective of slope position, the three landforms differed in these parameters in the order, depressed &gt; river levee &gt; elevated. The sand fraction impacted negatively on the silt fraction and bulk density of the soil, both of which controlled the soil moisture status. Despite the fairly low silt content of the soil, the silt fraction strongly influenced the gravimetric moisture content (R<sup>2</sup> = 0.80). So too did the soil bulk density on the gravimetric moisture content (R<sup>2</sup> = 0.90). It is concluded that: (1) since the landforms more prominently influenced the measured parameters than the slope positions, the former should take pre-eminence over the latter in soil suitability judgment; (2) with respect to moisture retention, variations in silt fraction and bulk density of this and other clayey inland-valley soils should be used as guide in site selection for sawah development.


Sign in / Sign up

Export Citation Format

Share Document