scholarly journals Variations in selected soil physical properties with landforms and slope within an inland valley ecosystem in Ashanti region of Ghana

2011 ◽  
Vol 6 (No. 2) ◽  
pp. 73-82 ◽  
Author(s):  
S.E. Obalum ◽  
J.C. Nwite ◽  
J. Oppong ◽  
C.A. Igwe ◽  
T. Wakatsuki

One peculiar feature of the inland valleys abundant in West Africa is their site-specific hydrology, underlain mainly by the prevailing landforms and topography. Development and management of these land resources under the increasingly popular sawah (a system of bunded, puddled and levelled rice field with facilities for irrigation and drainage) technology is a promising opportunity for enhancing rice (Oryza sativa L.) production in the region. Information on the variations in selected soil physical properties as influenced by the prevailing landforms may serve as a useful guide in site selection. This is of practical importance since majority of the inland valleys are potentially unsuitable for sawah development and most farmers in the region are of low technical level. Three landforms (river levee, elevated area and depressed area) were identified within a sawah field located in an inland valley at Ahafo Ano South District of Ghana. Each of these landforms was topsoil-sampled along on identified gradient (top, mid and bottom slope positions). Parameters determined included particle size distribution, bulk density, total porosity and field moisture content. The soil is predominantly clayey. There were no variations in the particle size distribution among the slope positions in the river levee. Overall, the river levee had lower silt content than the elevated and the depressed landforms. The bulk density, total porosity, and gravimetric moisture content indicated relative improvements only in the depressed area in the order, bottom &gt; mid &gt; top slope. Irrespective of slope position, the three landforms differed in these parameters in the order, depressed &gt; river levee &gt; elevated. The sand fraction impacted negatively on the silt fraction and bulk density of the soil, both of which controlled the soil moisture status. Despite the fairly low silt content of the soil, the silt fraction strongly influenced the gravimetric moisture content (R<sup>2</sup> = 0.80). So too did the soil bulk density on the gravimetric moisture content (R<sup>2</sup> = 0.90). It is concluded that: (1) since the landforms more prominently influenced the measured parameters than the slope positions, the former should take pre-eminence over the latter in soil suitability judgment; (2) with respect to moisture retention, variations in silt fraction and bulk density of this and other clayey inland-valley soils should be used as guide in site selection for sawah development.

2008 ◽  
Vol 32 (4) ◽  
pp. 1437-1446 ◽  
Author(s):  
Milton da Veiga ◽  
Dalvan José Reinert ◽  
José Miguel Reichert ◽  
Douglas Rodrigo Kaiser

Soil tillage promotes changes in soil structure. The magnitude of the changes varies with the nature of the soil, tillage system and soil water content and decreases over time after tillage. The objective of this study was to evaluate short-term (one year period) and long-term (nine year period) effects of soil tillage and nutrient sources on some physical properties of a very clayey Hapludox. Five tillage systems were evaluated: no-till (NT), chisel plow + one secondary disking (CP), primary + two (secondary) diskings (CT), CT with burning of crop residues (CTb), and CT with removal of crop residues from the field (CTr), in combination with five nutrient sources: control without nutrient application (C); mineral fertilizers, according to technical recommendations for each crop (MF); 5 Mg ha-1 yr-1 of poultry litter (wetmatter) (PL); 60 m³ ha-1 yr-1 of cattle slurry (CS) and; 40 m³ ha-1 yr-1 of swine slurry (SS). Bulk density (BD), total porosity (TP), and parameters related to the water retention curve (macroporosity, mesoporosity and microporosity) were determined after nine years and at five sampling dates during the tenth year of the experiment. Soil physical properties were tillage and time-dependent. Tilled treatments increased total porosity and macroporosity, and reduced bulk density in the surface layer (0.00-0.05 m), but this effect decreased over time after tillage operations due to natural soil reconsolidation, since no external stress was applied in this period. Changes in pore size distribution were more pronounced in larger and medium pore diameter classes. The bulk density was greatest in intermediate layers in all tillage treatments (0.05-0.10 and 0.12-0.17 m) and decreased down to the deepest layer (0.27-0.32 m), indicating a more compacted layer around 0.05-0.20 m. Nutrient sources did not significantly affect soil physical and hydraulic properties studied.


1986 ◽  
Vol 106 (3) ◽  
pp. 527-535 ◽  
Author(s):  
G. D. Towner

SummaryBatcombe series soils readily break down to good tilths, Beccles series soils form cloddy seed beds that are resistant to weathering, and Stackyard series soils form unstable tilths that readily break down. The soils differ in their particle-size distribution. The proposition that such differences contributed to the differences in field behaviour was examined by forming artificial soils, each of which was made up from particles of one of the soils, but redistributed with respect to size in the proportion in which they occurred in one of the other soils.As a measure of the relevant physical properties, breaking strengths and bulk densities of cylindrical ‘clods’ moulded from the artificial soils were determined. To aid interpretation of the observed soil properties, similar measurements were made on individual fractions, on various other mixtures and on the parent soils.The breaking strengths of the soils made up to a given particle-size distribution from particles from the different parent soils were reasonably close to each other, with those for the Beccles distribution being more variable. There was a significant difference between the two. The strength of the reconstituted Batcombe soil was markedly greater than that of its parent soil, whereas that for Beccles soil was markedly less. There was little difference for the Stackyard soil.The bulk densities of saturated soils reconstituted from all nine fractions could be estimated reasonably accurately from the properties of the separate components. The structure of each of these soils in the air-dry state was inferred from comparisons between measured and calculated bulk densities. The breaking strengths of air-dry reconstituted soils were estimated from the properties of the separate components, and agreed reasonably well with the measured values for soils in which the clay and fine silt fractions predominated.Whereas it was generally possible to predict various physical properties of the reconstituted soils from those of the separate fractions, it was not possible to extrapolate the results to explain field behaviour.


2020 ◽  
pp. 1-10
Author(s):  
Iroegbu, Chidinma S ◽  
Asawalam, Damian O ◽  
O. A. Dada ◽  
J. E. Orji

Aim: To determine the effect of different rates of sawdust (SD) and poultry manure (PM) applied on some soil physical properties of acid sandy Ultisol, and some growth parameters and yield of cocoyam. Study Design: 2 x 5 factorial arrangement in a randomized complete block design replicated three times.  Place and Duration of Study: The experiment was conducted in Eastern farm of Michael Okpara University of Agriculture, Umudike during 2014 and 2015 planting seasons. Methodology: The treatments comprised of two manure sources at five levels each: sawdust (0, 2, 10, 15 and 20t/ha) and poultry manure (0, 2, 4, 6 and 8t/ha). The treatments were assigned randomly to the plots and incorporated into the soil two weeks before planting. Data were collected on plant height, number of leaves, leaf area, corms, cormels and total yield. Soil samples were collected with core samplers for physical properties such as Soil Bulk density and Total Porosity. All the data collected were subjected to ANOVA for factorial experiment in RCBD at 5% probability level. Results: The result showed that the interactions of poultry manure and sawdust significantly (p<0.05) improved soil bulk density and total porosity with the lowest value obtained with 0t/ha SD + 8t/ha PM in both 2014 and 2015. The result showed that the interactions of poultry manure and sawdust significantly (p<0.05) increased the leaf area with the highest value obtained with 20t/ha SD + 8t/ha PM in both 2014 and 2015. Also, only the increasing rates of treatment applied significantly (p<0.05) increased the number of leaves, plant height, leaf area and cocoyam yield with the highest value obtained with 20t/ha SD + 8t/ha PM. Also, the various rates of treatment application significantly (p<0.05) increased the cocoyam yield (weight of corms and cormels) with the highest value obtained with 20t/ha SD + 8t/ha PM. Conclusion: Improvement in growth and yield of cocoyam resulted from the improved nutrient status of the soil as a result of the amendments applied.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1034 ◽  
Author(s):  
Hadi Sohrabi ◽  
Meghdad Jourgholami ◽  
Farzam Tavankar ◽  
Rachele Venanzi ◽  
Rodolfo Picchio

Protection of forest soils during harvesting operations is necessary to reduce damage and accelerate recovery time. The current study aims to evaluate soil physical properties, natural regeneration, and its recovery process in treatments including slope gradient, traffic intensity and skid trail after long periods of time, after ceasing the timber harvesting operations. The most recent skidding operations within each 5 years recovery period were studied for a chronosequence of 20 years. Soil samples were taken in abandoned skid trails and data were recorded on naturally regenerated species and density. The results revealed that most soil disturbances occurred on the slopes >20%, as well as the highest levels of traffic intensity. Bulk density and penetration resistance were still higher than the control area, with a significant difference between them, while total porosity was partially recovered. Twenty years after the skidding operation, soil bulk density and penetration resistance were 13.2% and 23.7% higher than the control area, while total porosity was 9.78% lower the than value of the control area. Seedlings of 50–150 cm and >150 cm in height on skid trails had significantly lower density than those in the control. The number of seedlings per m2 was less than the control area in all skid trails and for all height classes. The proportion of seedlings present in low traffic intensity was higher than in medium and high traffic intensities. The findings confirmed that full recovery rates are lengthy, and more time than 20 years is required to fully recover, especially with regards to penetration resistance.


2020 ◽  
Vol 855 ◽  
pp. 34-39
Author(s):  
Suprapedi ◽  
Muljadi ◽  
Priyo Sardjono ◽  
Ramlan Ramlan

A bonded permanent magnet of Barium hexa Ferrite has been made using powder BaFe12O19 (commercial ferrite) and a polymer of bakelite powder as binder. The composition of bakelite was varried 5% wt. The preparation of sample was begun with mass weighing for each material, then mixed together using ball mill for 1, 6 and 12 hours and using aquades as milling media. The mixed powder is dried in an oven at 110 °C for 4 hours, then the particle size distribution was measured. After that, the dried sample powder was pressed to form a pellet at pressure 40 MPa and temperature about 160 °C for 20 minutes. The characterization of sample pellet was done such as measurement of bulk density, hardness , magnetic properties using VSM and anylisis of microstructure using SEM. The results of the characterization show that the density and magnetic properties tend to increase with increasing of milling time, where the highest density, hardness and highest magnetic properties are achieved at sample with milling time for 12 hours. The value of magnetic properties at this condition are flux magnetic of 530 Gauss, remenance of 3100 Gauss, coercivity of 1,10 kOe.


Soil Research ◽  
1995 ◽  
Vol 33 (5) ◽  
pp. 851 ◽  
Author(s):  
MS Lorimer ◽  
LA Douglas

The effects of five management practices (native forest, native pasture, Phalaris pasture, crop-pasture rotation, continuous cropping), that had been in place for 18 years, on some soil physical properties of a red-brown earth near Bendigo, Victoria, were studied. Particle size distribution, bulk density and hydraulic conductivity of soil in the A and B horizons at different, management sites were measured. Where cultivation had occurred, soil in the A horizon contained less silt and clay, and more fine sand and coarse sand. The bulk density of the A horizon of soil that had produced at least six wheat crops since 1969 was greater than that of soil used for pasture or forest, while the hydraulic conductivity of soil cropped every year since 1969 was much less than that of soil under native forest. Particle size distributions for soil from the B horizons at the five management sites were found to be similar. Where pastures and crops had been established, the hydraulic conductivity of the upper B horizon was lower, and the bulk density was higher, than that of soil in the native forest (Eucalyptus spp).


2019 ◽  
Vol 9 (2) ◽  
pp. 154
Author(s):  
I PUTU DHARMA ◽  
I NYOMAN PUJA

The Effect of Soil Tillages Frequency and Compost Fertilizer on Soil Physical Properties and Corn Yields. The aims of this research is to determine of effect soil tillage frequency and compost fertilizer on soil physical properties and corn yields. The method was used a Randomized Block Design (RBD), factorial consisting of two factors, namely: Soil Tillages Frequency (T) consists of 3 levels, namely: T0 = no tillage; T1 = if one time and T2 = if twice. Compost Fertilizer (K) consists of 3 levels, namely: K0 = Without compost, K1 = 5 tons compost/ha and B2 = 10 tons compost/ha. Combination treatment into 9 treatments, namely T0K0 , T0K1, T0K2, T1K0, T1K1, T1K2, T2K0, T2K1, T2K2. and each treatment was repeated 3 times, so there were 27 research plots.The results showed that the soil tillage frequency and compost fertilizer had no significant effect on the soil physical properties and corn yields. Twice soil tillage frequency resulted bulk density, porosity, soil moisture content and dry corn yields respectively 1.01 g/cm3, 60.98%, 37.31% and 0.83 kg/m2, and not significant different compared with no tillage which is 1.03 g/cm3, 60.43%, 36.57% and 0.81 kg/m2. Addition of 10 tons compost/ha resulted bulk density, porosity, soil moisture content and dry corn yield respectively 0.99 g/cm3, 61.75%, 38.21% and 0.86 kg/m2, and not significant different compared with without compost fertilizer which is 1.06 g/cm3, 59.40%, 36.44% and 0.80 kg/m2.


2021 ◽  
Vol 922 (1) ◽  
pp. 012013
Author(s):  
S Sufardi ◽  
T Arabia ◽  
K Khairullah ◽  
I Apriani

Abstract Soil particle size distribution is a fundamental physical property affecting other soil properties. This research aims to determine the distribution of soil particles and the composition of clay minerals on each layer of the horizon in four soil profiles (P1, P2, P3, and P4) with different parent materials in the dryland of Aceh Besar district which includes Entisols Jantho, Andisols Saree, Inceptisols Cucum, and Oxisols Lembah Seulawah. Particle size distribution (or texture) and bulk density (BD) were analyzed in the laboratory. Soil structure and consistency were observed directly in the field. The type of clay minerals was identified by X-ray diffraction, while Fe, Al, and Si-oxide were extracted by dithionite-citrate solution. The results shown that the particle size distribution and the physical properties of dryland soils of Aceh Besar vary between soil orders. Andisols Saree has better physical properties than the physical properties of other soils and low bulk density. The Al, Fe, and Si fractions and clay mineral composition in the soil profiles also vary considerably between soil orders. The Andisols are dominated by allophane minerals (amorphous fractions) while Entisols, Inceptisols and Oxisols consist of mixed minerals of feldspar, quartz, halloysite, goethite, and other clay minerals. These soil orders have some soil physical constraints i.e. high soil bulk density, low water holding capacity and poor soil structures. Improvements in the physical properties of the soil on Aceh Besar dryland are indispensable to improve the quality of the soil.


2018 ◽  
Vol 31 (1) ◽  
pp. 48-58
Author(s):  
Aqeel J. Nassir

An experiment was conducted in fields of Agriculture college, University  of Basrah. The experiment was designed with split-spilt plots in Complete Randomized Blocks Design Treatments included three types of moldboard plows: helical,  semi digger and general –purpose, three soil moisture content levels (10.23,16.47 and 24.68%), and four tractor speed of 0.41, 0.56, 0.86 and 1.21 m sec -1  . The soil  physical properties were determined after plowing soil by using three types of moldboard plow. The results showed that there was significant effect of moldboard plow types, soil moisture content and tractor speed on soil physical properties including bulk density, soil porosity, soil penetration resistance and pulverization ratio. Results also indicated that the effect of interaction among plow types, soil moisture content and tractor speed was significantly on soil penetration resistance and pulverization ratios while it had not significantly effect on bulk density, soil porosity. In general, soil physical properties, had been improved when using high tractor speed and moderate soil moisture content whereas optimal operation was obtained when using general-purpose plow type and  high tractor speed of 1.12 m sec -1 and soil moisture content of 16.47% where this combination gives low bulk density (0.96Mg m-3), high soil porosity (63.90%) high soil pulverization ratio (74%) and low soil penetration resistance (623.47 kN m-2).


Sign in / Sign up

Export Citation Format

Share Document