scholarly journals Прочностные и деформационные свойства контакта композитной арматуры с мелкозернистым бетоном

2020 ◽  
Vol 44 (3) ◽  
pp. 139-150
Author(s):  

В последнее время в строительной практике увеличилось использование композитной арматуры с применением различного типа волокон и полимеров, проводятся обширные экспериментальные исследования для оценки ее механических характеристик. Однако взаимодействие между арматурными стержнями и бетоном все еще плохо изучено из-за разнообразия материалов и типов поверхности. В статье представлены результаты испытаний сцепления арматурных стержней с мелкозернистым бетоном. Пять серий бетонных цилиндров с заанкеренными в них базальтопластиковыми и стеклопластиковыми стержнями, изготавливаемыми на предприятиях Приморского края, были испытаны на прямое выдергивание. Проведены также сравнительные испытания двух серий образцов со стальными стержнями из холоднотянутой проволоки классов В-I и Bp-I. В качестве исследуемых параметров рассматривались не только прочностные свойства границы сцепления, но и параметры кривых «напряжение–деформация» во всем диапазоне испытаний, включая ниспадающую ветвь. Деформации непосредственно в арматурном стержне фиксировались с помощью установленного на нем экстензометра. Анализ полученных данных показал, что на прочность сцепления влияет преимущественно шаг ребер на поверхности стержней периодического профиля. Установлено, что наибольшая прочность сцепления была у стержней с шагом ребер 15 и 20 мм. В то же время в образцах с такими стержнями отмечалась начальная высокая жесткость сцепления и практически отсутствие нисходящей ветви на кривых «напряжение–деформация», что свидетельствует о хрупком характере нарушения сцепления по поверхности арматуры и бетона. Применение аналогичной арматуры в элементах строительных конструкций может привести к хрупкому разрушению до исчерпания их несущей способности, что крайне нежелательно. Прочность сцепления металлических стержней с бетоном оказалась ниже, чем у всех испытываемых стержней композитной арматуры. Таким образом, сделан вывод о достаточно высоком качестве представленных для исследования образцов композитной арматуры и перспективности ее использования в качестве альтернативы стальным стержням в железобетонных элементах. В то же время при разработке новых видов продукции необходимо учитывать не только прочность арматуры, но и ее совместную с бетоном работу в конструкции на всем протяжении эксплуатации, обеспечивая при этом требования норм проектирования по предельному напряжению сцепления. Ключевые слова: композитная арматура, стеклопластиковая арматура, базальтопластиковая арматура, мелкозернистый бетон, сцепление арматуры с бетоном. At the time being, the use of composite reinforcement with inclusion of various types of fibers and polymers has increased in construction practice; extensive experimental studies are being conducted to assess its mechanical characteristics. However, the interaction between reinforcing bars and concrete is still poorly understood due to the diversity of materials and surface types. This paper presents the results of tests to study the bond behavior of FRP bars with fine-grained concrete. Five series of concrete cylinders with basaltplastic embedded in them and fiberglass bars produced at industrial enterprises of the Primorsky Krai were tested for direct pulling. For comparison, two series of samples with steel bars of cold-drawn wire of classes B-I and Bp-I have also been tested. As the parameters studied, not only the strength properties of the adhesion boundary have been considered, but also the parameters of the stress-strain curves in the entire test range, including the descending branch. Deformations directly in the reinforcing bar have been recorded using an extensometer mounted on the reinforcing bar. Subsequent data analysis showed that the bong strength was mainly affected by the pitch of the ribs on the surface of the rods. It was found that the greatest bond strength was in the rods with a step of ribs of 15–20 mm. At the same time, in samples with such rods, initial high bond stiffness and almost no descending branches on the stress-strain curves were noted, which indicates brittle nature of bond failure. The use of similar reinforcement in the elements of building structures can lead to brittle fracture until their bearing capacity is exhausted, which is extremely undesirable. The bond strength of metal rods to concrete was lower than that of all tested rods of composite reinforcement bars. Thus, it was concluded that the quality of the FRP samples presented for the study and the prospects of using composite reinforcement as an alternative to steel bars in reinforced concrete elements are sufficiently high. At the same time, when developing new types of products, it is necessary to consider not only the strength of the reinforcement bar, but also its joint work with concrete in the structure throughout the entire operation, while ensuring the requirements of the Codes for ultimate adhesion stress. Keywords: composite reinforcement, fiberglass reinforcement, basalt-plastic reinforcement, fine-grained concrete, bond between reinforcement and concrete.

2018 ◽  
Vol 251 ◽  
pp. 02034
Author(s):  
Vladislav Pomelov ◽  
Olga Poddaeva ◽  
Pavel Churin

The article deals with the experimental investigation of the wind effect on coke chambers, which are part of delayed coking units. These structures are one of the most susceptible structures of an increased level of responsibility in the structure of industrial enterprises, which is primarily due to their height (height exceeds 100 meters). Experimental researches were carried out on the basis of the Educational Scientific and Production Laboratory for Aerodynamic Tests of Building Structures of NIU MGSU, using the Unique Scientific Installation of the Large Gradient Wind Tunnel. The text of the article shows the main features of the models made for carrying out experimental studies, briefly describes the process of testing and their results.


2018 ◽  
Vol 84 (12) ◽  
pp. 61-67
Author(s):  
V. A. Eryshev

The mechanical properties of a complex composite material formed by steel and hardened concrete, are studied. A technique of operative quality control of new credible concrete and reinforcement, both in laboratory and field conditions is developed for determination of the strength and strain characteristics of materials, as well as cohesion forces determining their joint operation under load. The design of the mobile unit is presented. The unit provides a possibility of changing the direction of loading and testing the reinforced element of the given shape both for tension and compression. Moreover, the nomenclature of testing equipment and the number of molds for manufacturing concrete samples substantially decrease. Using the values of forcing resulting in concrete cracking when the joint work of concrete and reinforcement is disrupted the values of the inherent stresses and strains attributed to the concrete shrinkage are determined. An analytical relationship between the forces and deformations of the reinforced concrete sample with central reinforcement is derived for axial tension and compression, with allowance for strains and stresses in the reinforcement and concrete resulted from concrete shrinkage. The results of experimental studies are presented, including tension diagrams and diagrams of developing axial deformations with an increase in the load under the central loading of the reinforced elements. A methodology of accounting for stresses and deformations resulted from concrete shrinkage is developed. The applicability of the derived analytical relationships between stresses and deformations on the material diagrams to calculations of the reinforced concrete structures in the framework of the deformation model is estimated.


Author(s):  
I. P. Korenkov ◽  
A. I. Ermakov ◽  
A. B. Mayzik ◽  
T. N. Laschenova ◽  
V. N. Klochkov ◽  
...  

The aim of the study is to evaluate the volume activity of radioactive waste (RW) by surface and specific alpha contamination using portable gamma-spectrometry.Materials and methods. Methods of rapid assessment of the content of α-emitting radionuclides in solid waste of various morphologies using gamma-spectrometers based on germanium detectors are considered. Computational methods for determining the effectiveness of radionuclide registration are presented.Results. The possibility of using portable gamma-ray spectrometry to assess the surface and specific activity of various materials contaminated with α-emitters (232Th, 235U, 238U, 237Np, 239Pu, 240Pu and 241Am) is shown. The calculated values of the registration efficiency of low-energy gamma-emitters obtained by modeling the spatial-energy parameters of the detector are given.To simplify the solution of this problem, the calculation program used 20 standard templates of various geometries (rectangular, cylindrical, conical, spherical, etc.). The main sources of error in the survey of contaminated surfaces, largesized equipment and building structures were investigated.Conclusions. The possibilities of portable γ-spectrometry for estimating the volume of RW based on the surface density of contamination of materials with radionuclides of uranium and transuranic elements are investigated. When using γ-spectrometer with a high-purity germanium detector with a range of γ-quanta extended in the low-energy region, radionuclides such as 232Th, 235U,238U, 237Np, 241Am were determined by their own radiation or by the radiation of their daughter products.The “problem” element is plutonium, for rapid evaluation of which it is proposed, in accordance with the radionuclide vector methodology, to use 241Am, which accumulates during the β-decay of 241Pu.According to calculations, the most likely value of the activity ratio 239Pu/241Am for the object where the work was performed (scaling factor) varies in the range from 5.0 to 9.0.Based on the results of calculations and experimental studies, the parameters of the efficiency of registration of various α-emitting radionuclides by portable γ-spectrometers. It has been found that for germanium detectors with an absolute efficiency of registering a point source of 7÷15%, it is n×10–5÷n×10–4%.


Author(s):  
D.J. Varacalle ◽  
K.W. Couch ◽  
V.S. Budinger

Abstract Experimental studies of the subsonic combustion process have been conducted in order to determine the quality and economics of polyester, epoxy, urethane, and hybrid polyester-epoxy coatings. Thermally sprayed polymer coatings are of interest to several industries for anti-corrosion applications, including the infrastructural, chemical, automotive, and aircraft industries. Classical experiments were conducted, from which a substantial range of thermal processing conditions and their effect on the resultant coating were obtained. The coatings were characterized and evaluated by a number of techniques, including Knoop microhardness tests, optical metallography, image analysis, and bond strength. Characterization of the coatings yielded thickness, bond strength, hardness, and porosity.


2020 ◽  
Vol 34 (05) ◽  
pp. 8376-8383
Author(s):  
Dayiheng Liu ◽  
Jie Fu ◽  
Yidan Zhang ◽  
Chris Pal ◽  
Jiancheng Lv

Typical methods for unsupervised text style transfer often rely on two key ingredients: 1) seeking the explicit disentanglement of the content and the attributes, and 2) troublesome adversarial learning. In this paper, we show that neither of these components is indispensable. We propose a new framework that utilizes the gradients to revise the sentence in a continuous space during inference to achieve text style transfer. Our method consists of three key components: a variational auto-encoder (VAE), some attribute predictors (one for each attribute), and a content predictor. The VAE and the two types of predictors enable us to perform gradient-based optimization in the continuous space, which is mapped from sentences in a discrete space, to find the representation of a target sentence with the desired attributes and preserved content. Moreover, the proposed method naturally has the ability to simultaneously manipulate multiple fine-grained attributes, such as sentence length and the presence of specific words, when performing text style transfer tasks. Compared with previous adversarial learning based methods, the proposed method is more interpretable, controllable and easier to train. Extensive experimental studies on three popular text style transfer tasks show that the proposed method significantly outperforms five state-of-the-art methods.


Author(s):  
O. Radaikin ◽  
L. Sharafutdinov

The purpose of the study is to experimentally study the joint work of steel fiber reinforced concrete (SFB) reinforcement jacket and reinforced concrete beams at all stages of loading to further develop a methodology for calculating this method of reinforcing bending elements. The main results of the study consist in assessing the strength, stiffness, fracture toughness, as well as the nature of fracture with a picture of the development of cracks for the examined 4 samples (two with a jacket of reinforcement, two - control - without reinforcement). It has been established that the use of SFB jacket with a thickness of 45 mm and with a fiber content percentage of 2,5% (at a flow rate of 196 kg/m3) increases the breaking load by 20 %, stiffness from 3,4 to 11 times as it is loaded, crack resistance 2,4-2,8 times. The results are compared with computer modeling in ANSYS PC: the discrepancy in the load of crack formation, fracture and deflection values for full-scale samples and a computer model are within 6,3 %, which indicates the reliability of the numerical results and the possibility of using the proposed computer models in further studies on topic of the article.


Sign in / Sign up

Export Citation Format

Share Document