scholarly journals Experimental studies of wind impact on coke chambers

2018 ◽  
Vol 251 ◽  
pp. 02034
Author(s):  
Vladislav Pomelov ◽  
Olga Poddaeva ◽  
Pavel Churin

The article deals with the experimental investigation of the wind effect on coke chambers, which are part of delayed coking units. These structures are one of the most susceptible structures of an increased level of responsibility in the structure of industrial enterprises, which is primarily due to their height (height exceeds 100 meters). Experimental researches were carried out on the basis of the Educational Scientific and Production Laboratory for Aerodynamic Tests of Building Structures of NIU MGSU, using the Unique Scientific Installation of the Large Gradient Wind Tunnel. The text of the article shows the main features of the models made for carrying out experimental studies, briefly describes the process of testing and their results.

2011 ◽  
Vol 250-253 ◽  
pp. 2919-2922
Author(s):  
Jing Xian Li ◽  
Jia Peng He

In this paper, full-scale experiments had been designed and implemented in wind tunnel to simulate the corridor fire. A combination model with smoke buffer and other smoke-control modes was established on the base of experiment, and Fire Dynamic Simulation (FDS) was applied to simulate fire in the same conditions. The results reflected that the model is reasonable and viable by compared the simulation results and the experiment dates and the error of the average temperature is about 4.08%. Experimental studies also show that in those modes one smoke outlet is needed every 30m and it is better to set near the ignition source. Its exhaust efficiency is 72.1%, better than others; additionally it needs to put up smoke screen to strengthen the smoke exhaust effect. Thus the best combination with smoke-control is perfect in corridor.


2020 ◽  
Vol 44 (3) ◽  
pp. 139-150
Author(s):  

В последнее время в строительной практике увеличилось использование композитной арматуры с применением различного типа волокон и полимеров, проводятся обширные экспериментальные исследования для оценки ее механических характеристик. Однако взаимодействие между арматурными стержнями и бетоном все еще плохо изучено из-за разнообразия материалов и типов поверхности. В статье представлены результаты испытаний сцепления арматурных стержней с мелкозернистым бетоном. Пять серий бетонных цилиндров с заанкеренными в них базальтопластиковыми и стеклопластиковыми стержнями, изготавливаемыми на предприятиях Приморского края, были испытаны на прямое выдергивание. Проведены также сравнительные испытания двух серий образцов со стальными стержнями из холоднотянутой проволоки классов В-I и Bp-I. В качестве исследуемых параметров рассматривались не только прочностные свойства границы сцепления, но и параметры кривых «напряжение–деформация» во всем диапазоне испытаний, включая ниспадающую ветвь. Деформации непосредственно в арматурном стержне фиксировались с помощью установленного на нем экстензометра. Анализ полученных данных показал, что на прочность сцепления влияет преимущественно шаг ребер на поверхности стержней периодического профиля. Установлено, что наибольшая прочность сцепления была у стержней с шагом ребер 15 и 20 мм. В то же время в образцах с такими стержнями отмечалась начальная высокая жесткость сцепления и практически отсутствие нисходящей ветви на кривых «напряжение–деформация», что свидетельствует о хрупком характере нарушения сцепления по поверхности арматуры и бетона. Применение аналогичной арматуры в элементах строительных конструкций может привести к хрупкому разрушению до исчерпания их несущей способности, что крайне нежелательно. Прочность сцепления металлических стержней с бетоном оказалась ниже, чем у всех испытываемых стержней композитной арматуры. Таким образом, сделан вывод о достаточно высоком качестве представленных для исследования образцов композитной арматуры и перспективности ее использования в качестве альтернативы стальным стержням в железобетонных элементах. В то же время при разработке новых видов продукции необходимо учитывать не только прочность арматуры, но и ее совместную с бетоном работу в конструкции на всем протяжении эксплуатации, обеспечивая при этом требования норм проектирования по предельному напряжению сцепления. Ключевые слова: композитная арматура, стеклопластиковая арматура, базальтопластиковая арматура, мелкозернистый бетон, сцепление арматуры с бетоном. At the time being, the use of composite reinforcement with inclusion of various types of fibers and polymers has increased in construction practice; extensive experimental studies are being conducted to assess its mechanical characteristics. However, the interaction between reinforcing bars and concrete is still poorly understood due to the diversity of materials and surface types. This paper presents the results of tests to study the bond behavior of FRP bars with fine-grained concrete. Five series of concrete cylinders with basaltplastic embedded in them and fiberglass bars produced at industrial enterprises of the Primorsky Krai were tested for direct pulling. For comparison, two series of samples with steel bars of cold-drawn wire of classes B-I and Bp-I have also been tested. As the parameters studied, not only the strength properties of the adhesion boundary have been considered, but also the parameters of the stress-strain curves in the entire test range, including the descending branch. Deformations directly in the reinforcing bar have been recorded using an extensometer mounted on the reinforcing bar. Subsequent data analysis showed that the bong strength was mainly affected by the pitch of the ribs on the surface of the rods. It was found that the greatest bond strength was in the rods with a step of ribs of 15–20 mm. At the same time, in samples with such rods, initial high bond stiffness and almost no descending branches on the stress-strain curves were noted, which indicates brittle nature of bond failure. The use of similar reinforcement in the elements of building structures can lead to brittle fracture until their bearing capacity is exhausted, which is extremely undesirable. The bond strength of metal rods to concrete was lower than that of all tested rods of composite reinforcement bars. Thus, it was concluded that the quality of the FRP samples presented for the study and the prospects of using composite reinforcement as an alternative to steel bars in reinforced concrete elements are sufficiently high. At the same time, when developing new types of products, it is necessary to consider not only the strength of the reinforcement bar, but also its joint work with concrete in the structure throughout the entire operation, while ensuring the requirements of the Codes for ultimate adhesion stress. Keywords: composite reinforcement, fiberglass reinforcement, basalt-plastic reinforcement, fine-grained concrete, bond between reinforcement and concrete.


Author(s):  
I. P. Korenkov ◽  
A. I. Ermakov ◽  
A. B. Mayzik ◽  
T. N. Laschenova ◽  
V. N. Klochkov ◽  
...  

The aim of the study is to evaluate the volume activity of radioactive waste (RW) by surface and specific alpha contamination using portable gamma-spectrometry.Materials and methods. Methods of rapid assessment of the content of α-emitting radionuclides in solid waste of various morphologies using gamma-spectrometers based on germanium detectors are considered. Computational methods for determining the effectiveness of radionuclide registration are presented.Results. The possibility of using portable gamma-ray spectrometry to assess the surface and specific activity of various materials contaminated with α-emitters (232Th, 235U, 238U, 237Np, 239Pu, 240Pu and 241Am) is shown. The calculated values of the registration efficiency of low-energy gamma-emitters obtained by modeling the spatial-energy parameters of the detector are given.To simplify the solution of this problem, the calculation program used 20 standard templates of various geometries (rectangular, cylindrical, conical, spherical, etc.). The main sources of error in the survey of contaminated surfaces, largesized equipment and building structures were investigated.Conclusions. The possibilities of portable γ-spectrometry for estimating the volume of RW based on the surface density of contamination of materials with radionuclides of uranium and transuranic elements are investigated. When using γ-spectrometer with a high-purity germanium detector with a range of γ-quanta extended in the low-energy region, radionuclides such as 232Th, 235U,238U, 237Np, 241Am were determined by their own radiation or by the radiation of their daughter products.The “problem” element is plutonium, for rapid evaluation of which it is proposed, in accordance with the radionuclide vector methodology, to use 241Am, which accumulates during the β-decay of 241Pu.According to calculations, the most likely value of the activity ratio 239Pu/241Am for the object where the work was performed (scaling factor) varies in the range from 5.0 to 9.0.Based on the results of calculations and experimental studies, the parameters of the efficiency of registration of various α-emitting radionuclides by portable γ-spectrometers. It has been found that for germanium detectors with an absolute efficiency of registering a point source of 7÷15%, it is n×10–5÷n×10–4%.


Author(s):  
Джугурян Т.Г. ◽  
Марчук В.І. ◽  
Марчук І. В.

During the design of operations of centerless intermittent grinding of surfaces there is a need to identify the natural frequencies of oscillations of the elements of the technological system of grinding. The method of calculation of rigidity, vibration resistance and forced oscillations of the elements of the circular grinding machine is offered in the article. Carrying out of experimental researches of rigidity of elastic system of the SASL 5AD grinding machine. We conducted preliminary experimental studies to measure the oscillations of various elements of the elastic system of the SASL 5AD grinding machine in the horizontal plane by piezoelectric sensors during grinding with continuous and discontinuous circles with different geometric parameters.


2014 ◽  
Vol 90 ◽  
pp. 314-319
Author(s):  
Kapil Ghosh ◽  
Md. Quamrul Islam ◽  
Mohammad Ali

2012 ◽  
Vol 204-208 ◽  
pp. 4884-4887
Author(s):  
Jian Feng Wu ◽  
Cai Hua Wang ◽  
Chang Li Song

The numerical simulation of construction is to obtain the desired accuracy. It depends on the theoretical basis of the calculator and selection of the various important factors in the actual operation. For this problem, this paper adopting the current code for the design of building structures as the comparison standard, using the FLUENT software, taking the numerical simulation results of a high building’s wind load shape coefficient of for example, discussing the influence of four kinds of the convective terms discretization scheme, respectively the first-order upwind, the second order upwind , power law and Quadratic upwind interpolation for convective kinematics, on the simulation results of architectural numerical wind tunnel, provides the reference for the rational use of numerical wind tunnel method.


1935 ◽  
Vol 39 (295) ◽  
pp. 619-632
Author(s):  
TH. Von karman ◽  
Clark B. Millikan

The problem of the maximum lift of airfoils has concerned the authors greatly since there were first discovered in the spring of 1932 serious discrepancies in this characteristic between results obtained in the wind tunnel of the Guggenheim Aeronautics Laboratory at the California Institute of Technology (GALCIT) and those reported from certain other wind tunnels. An elaborate experimental investigation by the junior author and A. L. Klein indicated that the value of CLmax for a given airfoil was strongly affected both by Reynolds number and by the degree of turbulence in the tunnel wind stream.


2019 ◽  
pp. 73-77
Author(s):  
Vasiliy Mihaylovich Boykov ◽  
Sergey Viktorovich Startsev ◽  
Aleksey Vladimirovich Ageev

It is given the description of the design and specifications developed in Saratov State Agrarian University plow-blade grader of general purpose PBS-3M aggregated with tractors of traction class 1.4. In the result of experimental researches of the arable unit consisting of the MTZ-82 tractor and the plow PBS-3M on a stubble background of the field with soil of low humidity and high hardness operational and technological indicators of the unit on the main dump processing of the soil are defined.  Studies were conducted in three ways: plough PBS-3M fitted with three frames, fitted with two frames, with removed front frame; fitted with two frames, removed the rear frame. The graphical dependences of the plow traction resistance and the unit performance on the speed of MTZ-82+PBS-3M are presented.


Author(s):  
Ivaylo Nedyalkov ◽  
Adam Lovell ◽  
Alec Cunningham

Drafting is commonly utilized in cycling, particularly during competitions. According to the literature, in a racing environment, the riders can expend 90% of their energy on overcoming drag, and can save about 30% of their energy by riding behind another rider in the absence of cross-wind. In the presence of a strong cross-wind, competitive cyclists form echelons by placing themselves about halfway behind each other, while being slightly offset sideways. Although forming an echelon is a common practice, the formation has not been sufficiently studied in the literature. To address this, the drag and side forces on a model cyclist were studied experimentally. A simplified 3D model was built based on the outline of a competitive cyclist. Two 1:11 scale models were rapid-prototyped and tested in a wind tunnel. The drafting effects on a cyclist were investigated for different yaw angles — the angles of the apparent wind with respect to the direction of cyclist motion. The effects of wind-stream-wise position and wind-off-stream-wise position were studied for each angle by measuring the drag and side-force on a model placed in the wake of another identical model. The results suggest that there is a significant decrease in both drag and side force when a cyclist is riding in the wake of another cyclist. Although a smaller wind-stream-wise offset generally results in smaller forces, this effect is not significant for most configurations. The offset in the wind-off-stream-wise direction has a noticeable effect on the forces — no off-stream-wise offset results in the lowest drag and side force, except for low yaw angles at which it may be beneficial for the drafting cyclist to be slightly forward with respect to the in-line (no offset) position.


Sign in / Sign up

Export Citation Format

Share Document