scholarly journals Investigation of Structure and Wear Resistance of Nanocomposite Coating of Chemical Nickel

2018 ◽  
Vol 40 (4) ◽  
pp. 529-537
Author(s):  
V. Safonov ◽  
S. Shishurin ◽  
P. Gorbushin ◽  
S. Chumakova ◽  
A. Kolomeichenko ◽  
...  
2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940019 ◽  
Author(s):  
Weihui Zhang ◽  
Di Cao ◽  
Yanxin Qiao ◽  
Yuxin Wang ◽  
Xiang Li ◽  
...  

Duplex Ni-P-TiO2/Ni coatings were deposited on the brass substrate by using two baths. Ni-P-TiO2 nanocomposite coatings were electroplated as the outer layer on the Ni-plated brass substrate by adding transparent TiO2 sol (0–50 mL/L) into the Ni-P plating solution. The microstructure, mechanical property and corrosion resistance of the duplex Ni-P-TiO2/Ni nanocomposite coatings were systemically investigated. The results show that the interface of duplex coating was uniform and the adhesion between two layers was extremely good. The microhardness of duplex Ni-P-12.5 mL/L TiO2 /Ni coating was [Formula: see text]616 HV[Formula: see text] compared to [Formula: see text]539 HV[Formula: see text] of Ni-P /Ni coating and [Formula: see text]307 HV[Formula: see text] of single Ni coating. Meanwhile, the wear resistance and the corrosion resistance of the duplex nanocomposite coating have also been improved remarkably compared with single Ni coating. However, adding excessive TiO2 sol (more than 12.5 mL/L) caused the agglomeration of TiO2 nanoparticles and led to a porous structure in the outer layer, resulting in the deterioration of coating properties.


2016 ◽  
Vol 24 (06) ◽  
pp. 1750080 ◽  
Author(s):  
MANSOUR RAZAVI ◽  
MOHAMMAD REZA RAHIMIPOUR ◽  
MOJDEH GANJI ◽  
MANSOREH GANJALI ◽  
MONIREH GANGALI

The possibility of deposition of Fe–TiC nanocomposite on the surface of carbon steel substrate with the laser coating method had been investigated. Mechanical milling was used for the preparation of raw materials. The mixture of milled powders was used as a coating material on the substrate steel surface and a CO2 laser was used in continuous mode for coating. Microstructural studies were performed by scanning electron microscopy. Determinations of produced phases, crystallite size and mean strain have been done by X-ray diffraction. The hardness and wear resistance of coated samples were measured. The results showed that the in situ formation of Fe–TiC nanocomposite coating using laser method is possible. This coating has been successfully used to improve the hardness and wear resistance of the substrate so that the hardness increased by about six times. Coated iron and titanium carbide crystallite sizes were in the nanometer scale.


2018 ◽  
Vol 50 (3) ◽  
pp. 265-276 ◽  
Author(s):  
S. Viswanathan ◽  
L. Mohan ◽  
Parthasarathi Bera ◽  
S. Shanthiswaroop ◽  
M. Muniprakash ◽  
...  

2010 ◽  
Vol 455 ◽  
pp. 427-430 ◽  
Author(s):  
Yu Jun Xue ◽  
Chen Shen ◽  
Ji Shun Li ◽  
Yi Liu

Ni-Y2O3-ZrO2 nanocomposite coating was prepared by co-deposition of nickel, Yttrium oxide (Y2O3) and zirconium oxide (ZrO2) nanoparticles using ultrasonic electrodeopsition. The surface morphology and composition of coatings were ananlyzed by an environmental scanning electron microscope (ESEM) and energy dispersive spectrometer(EDS). The high temperature oxidation, microhardness and wear resistance of the coatings were investigated. It is found that both the incorporation of nanoparticles and the use of ultrasonic could refine Ni crystal grains and improve properties of the coatings. The Ni-Y2O3-ZrO2 nanocomposite coating prepared with ultrasonic exhibits finer grains, higher microhardness and better oxidation and wear resistance.


2021 ◽  
Vol 893 ◽  
pp. 105-110
Author(s):  
See Leng Tay ◽  
Pratik Jadhav ◽  
Chris Goode

The intrinsic hardness, high abrasive wear resistance, and corrosion properties of hard chrome coatings have resulted in their wide industrial application. However, chrome plating involves hazards associated with chrome 6+ which affect human health and drive the need to identify viable alternatives. This study investigated the addition of Cirrus alumina Dopant™ to a low phosphorus electroless nickel bath to evaluate the performance of the resulting nanocomposite coating as a potential replacement for hard chrome. A comprehensive comparison for the performance of coatings for alumina doped electroless nickel and a pure low electroless nickel coating were investigated. Results showed that Cirrus doped electroless nickel possessed a minimum hardness of 850HV0.1, high corrosion resistance, excellent abrasive wear resistance, and a Taber Wear Index of 2.25mg/1000 cycles. These attributes suggest Cirrus Dopant™ for electroless nickel may offer an outstanding candidate to replace hard chrome coatings in many applications.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Alireza Firouzbakht ◽  
Mansour Razavi ◽  
Mohammad Reza Rahimipour

These days wear-resistant coatings including Fe–TiC composites because of their properties such as high melting point, hardness, and wear resistance are used in different fields such as aerospace, transport, cutting, and abrasive. In situ synthesis of Fe–TiC nanocomposite as a wear-resistant coating by the plasma-spray process is the purpose of this study. Ilmenite concentrate and carbon black were used as raw materials. Three kinds of powders with different conditions were prepared and sprayed on CK45 steel substrates in constant conditions. Microstructure, phase identification, wear resistance, and hardness of coated samples were determined. The results showed that activated sample was synthesized during the plasma spray, but in situ synthesize did not happen for inactive sample which was sprayed by plasma spray. Also, wear resistance and hardness tests showed by synthesis of Fe–TiC composite in coated samples, wear resistance, and hardness were increased.


2010 ◽  
Vol 146-147 ◽  
pp. 641-645
Author(s):  
Nuchjira Dejang ◽  
Anucha Watcharapasorn ◽  
Sittichai Wirojupatump ◽  
Simo Pekka Hannula ◽  
Sukanda Jiansirisomboon

The incorporation of nano-size TiO2 particles can significantly enhance the microstructure and mechanic properties of Al2O3 coating. Phase transformation from mainly stable α-Al2O3 and anatase-TiO2 in the powders to predominant metastable γ-Al2O3 and rutile-TiO2 in the coatings was observed. Reaction between Al2O3 and TiO2 phase also occurred producing new phase Al2TiO5 phase. Microstructural investigation showed that well separated TiO2 lamellas were homogeneously dispersed between Al2O3 lamellas. It was found that the plasma-sprayed composite coating possessed better wear resistance than that of monolithic Al2O3 coating. The addition of TiO2 was found to improve friction coefficient, wear resistance and fracture toughness.


Sign in / Sign up

Export Citation Format

Share Document