scholarly journals Effect of Electron-Beam Welding Speed on Weld Metal Mechanical Properties of 5V Titanium Alloy

2020 ◽  
Vol 8 (2) ◽  
pp. 40-46
Author(s):  
Xilong Zhao ◽  
Xinhong Lu ◽  
Kun Wang ◽  
Feng He

Electron beam welding (EBW) is a fusion joining process particularly suitable for welding titanium plates. In the present work, 2.5 mm thickness Ti6Al4V titanium alloy plates were butt-welded together with backing plates by EBW. The detailed procedures of experiments were used to investigate the microstructure and mechanical properties of welded joints. The optimum welding speed was determined by microstructure examinations, microhardness tests, X-Ray diffraction tests, shear punch tests (SPT) and stress simulation calculations. The results showed that all microstructure of welded metal (WM) was martensite phase under the different welding speeds. In the heat-affected zone (HAZ), the martensite phase gradually evolved to be small and equiaxed. It can be seen that the microstructure of each region in welded joints did not change significantly. When the welding speed is between 8 mm/s and 14 mm/s, it can be seen from the macroscopic appearance of the joints that there was no utterly fused penetration between the butt plate and substrate. Finite element simulation was carried out for the no-penetration depth under different welding conditions, and it was found that the stress suffered by the small no-penetration depth was the smallest. Using different welding parameters shows that the engineering stress in WM was higher than other areas, and BM was the lowest. As welding speed increases from 8 mm/s to 14 mm/s, the variation of microhardness distribution was not evident.


2013 ◽  
Vol 475-476 ◽  
pp. 1275-1279
Author(s):  
Qiang Zheng ◽  
Cheng Gang Yang ◽  
Yu He ◽  
He Chen ◽  
Ai Wu Yu

LY12 aluminum alloy was welded with vacuum electron beam welding, the effect of welding speed and electron beam current on the weld microstructure and mechanical properties of welding joints were studied, the results were shown that with the increasing of welding speed or decreasing of electron beam current, the grains in weld metal were refined, so the joint strength were increased. When the electron beam current was 18mA, the welding speed was 1000mm/min, the grains of weld metal were the finest, and the tensile strength was 373.2MPa. In addition, the micro-hardness of weld metal was much lower than base metal and heat affected zone, and the heat affected zone had certain softening phenomenon. With the increasing of welding speed or decreasing of electron beam current, the micro-hardness of weld metal was increased respectively.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2233
Author(s):  
Tatyana Olshanskaya ◽  
Vladimir Belenkiy ◽  
Elena Fedoseeva ◽  
Elena Koleva ◽  
Dmitriy Trushnikov

The application of electron beam sweep makes it possible to carry out multifocal and multi-beam welding, as well as combine the welding process with local heating or subsequent heat treatment, which is important when preparing products from thermally-hardened materials. This paper presents a method of electron beam welding (EBW) with dynamic beam positioning and its experimental-calculation results regarding the formation of structures and properties of heat-resistant steel welded joints (grade of steel 20Cr3MoWV). The application of electron beam oscillations in welding makes it possible to change the shape and dimensions of welding pool. It also affects the crystallization and formation of a primary structure. It has been established that EBW with dynamic beam positioning increases the weld metal residence time and the thermal effect zone above the critical A3 point, increases cooling time and considerably reduces instantaneous cooling rates as compared to welding without beam sweep. Also, the difference between cooling rates in the depth of a welded joint considerably reduces the degree of structural non-uniformity. A bainitic–martensitic structure is formed in the weld metal and the thermal effect zone throughout the whole depth of fusion. As a result of this structure, the level of mechanical properties of a welded joint produced from EBW with dynamic electron beam positioning approaches that of parent metal to a greater extent than in the case of welding by a static beam. As a consequence, welding of heat-resistant steels reduces the degree of non-uniformity of mechanical properties in the depth of welded joints, as well as decreases the level of hardening of a welded joint in relation to parent metal.


Mechanik ◽  
2017 ◽  
Vol 90 (11) ◽  
pp. 1069-1071
Author(s):  
Sławomir Spadło ◽  
Wojciech Depczyński ◽  
Piotr Młynarczyk ◽  
Wojciech Wójtowicz ◽  
Radosław Mijas

The paper presents microstructure investigations as well as properties and technical parameters of welds made using the electron beam welding method (EBW). Electron beam welding is a bonding process, especially suitable in the case of titanium and other oxidation-sensitive materials, because it must be carried out in a vacuum. Integrity of the joint was determined on the basis of mechanical properties and microstructure evaluation. The micro-hardness of the weld was measured with the Matsuzawa-Vickers MX 100 – a load of 100 G (0.98 N) was used. Nikon Eclipse MA200 microscope was used to examine the microstructure and determining the size of individual articulation zones.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 810 ◽  
Author(s):  
Defeng Mo ◽  
Yang Wang ◽  
Yongjian Fang ◽  
Tingfeng Song ◽  
Xiaosong Jiang

Dissimilar metal joining between titanium and kovar alloys was conducted using electron beam welding. Metallurgical bonding of titanium alloys and kovar alloys was achieved by using a Cu/Nb multi-interlayer. The effects of welding speed on weld appearance, microstructure and mechanical properties of welded joints were investigated. The microstructure of welded joints was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). The mechanical properties of welded joints were investigated by tensile strength and micro-hardness tests. The results showed that welding speed had great effects on the weld appearance, microstructure, and mechanical properties of electron beam-welded joints. With an increase of welding speed, at the titanium alloy side, the amount of (Nb,Ti) solid solution was increased, while the formation of brittle FeTi was effectively suppressed. At the kovar alloy side, microstructure was mainly composed of soft Cu solid solution and some α-Fe + γ phases. In addition, higher welding speeds within a certain range was beneficial for eliminating the formation of cracks, and inhibiting the embrittlement of welded joints. Therefore, the tensile strength of welded joints was increased to about 120 MPa for a welding speed of 10 mm/s. Furthermore, the bonding mechanism of TC4/Nb/Cu/4J29 dissimilar welded joints had been investigated and detailed.


2016 ◽  
Vol 879 ◽  
pp. 714-719 ◽  
Author(s):  
Petr Havlík ◽  
Jan Kouřil ◽  
Rudolf Foret ◽  
Ivo Dlouhy ◽  
Norbert Enzinger ◽  
...  

Aluminum and titanium alloys are among the most important and the most frequently used construction materials due to their physical and mechanical properties. Especially in the automotive and aerospace industry these materials allow to reduce the weight of structure which leads to reducing fuel consumption and environment pollution. These materials are often used together which leads to problems with junction between these materials. In addition to the mechanical joints, there is an effort to produce quality welded joints. Series of works focused to welding of Al/Ti joints by conventional and nonconventional welding methods were published [1, 4, 5, 6, 7]. By reduction of dimensions of molten material is possible to reduce the amount of emerging intermetallic phases and welding defects. Electron beam welding appears as suitable method for welding Al/Ti joints because it allows production of very narrow welds. The benefit is also necessity to perform electron beam welding in vacuum which is required for decrease energy losses of incident beam and simultaneously prevents reaction of molten metal with ambient atmosphere. This paper is focused to determine of appropriate parameters for electron beam welding of heterogeneous welds of titanium alloy Ti-6Al-4V and aluminum alloy 6061. Metallographic evaluation, analysis of chemical and phase composition were performed on the test welds for purpose to describing present phases. On the selected welds was evaluated the influence of intermetallic phases on the mechanical properties. The obtained results will be used for further experiments focused to optimize the process of electron beam welding of Al/Ti alloys.


2021 ◽  
Vol 410 ◽  
pp. 359-365
Author(s):  
Egor V. Terentyev ◽  
Artem Yu. Marchenkov ◽  
Ksenia T. Borodavkina

Influence of residual welding stresses on the hardness values of the weld metal is studied. The investigations were carried out on 5V titanium alloy welded joints, obtained by electron-beam welding and argon-arc welding (TIG-welding). It is shown that the nature of the residual stresses distribution depends on the parameters of welding and affects the hardness values of the weld metal. It is shown, that the difference between the hardness values of the metal after welding and the metal after partial relief of residual stresses on the investigated alloy is up to 90 MPa, which is about 3% of the weld metal hardness level.


Sign in / Sign up

Export Citation Format

Share Document