scholarly journals Enhance Derivative Design Considering Global Sensitivity of Design Parameters

Author(s):  
Hyeong-UK Park ◽  
Kamran Behdinan ◽  
Joon Chung ◽  
Jae-Woo Lee

An engineering product design considers derivatives to reduce the life cycle cost and to increase the efficiency on operation when it has new demands. The proposed design process in this study obtains derivative designs based on sensitivity of design variable. The efficiency and accuracy of the derivative design process can be enhanced by implementing global sensitivity analysis. Sensitivity analysis sensors the design variables accordingly and variables with low sensitivity for objective function can be neglected, since computational effort and time is not necessary for a design with less priority. In this research, e-FAST method code for global sensitivity analysis module was developed and implemented on Multidisciplinary Design Optimization (MDO) problem. The wing design was considered for MDO problem that used aerodynamics and structural disciplines. The global sensitivity analysis method was applied to reduce the number of design variables and Collaborative Optimization (CO) was used as MDO method. This research shows the efficiency of reduction of dimensionality of complex MDO problem by using global sensitivity analysis. In addition, this result shows important design variables for design requirement to student when they solving design problem.

Author(s):  
Hyunkyoo Cho ◽  
Ujjwal Shrestha ◽  
Young-Do Choi ◽  
Jungwan Park

Abstract Global sensitivity analysis (GSA) estimates influence of design variables in the entire design domain on performance measures. Hence, using GSA, important design variables could be found for an engineering application with high dimension which require computationally expensive analyses. Then, similar engineering applications could use selected variables to carry out design process with smaller dimension and affordable computational cost. In this study, GSA has been carried out for the performance measures in design of stay vane and casing of reaction hydraulic turbines. Global sensitivity index method is used for GSA because it can fully capture the effect of interaction between the design variables. For efficiency, genetic aggregation surrogate models are constructed using the responses of computational fluid dynamic (CFD) analysis. Global sensitivity indices for the performance measures of stay vane and casing have been evaluated using the surrogate models. It is found that less than three design variables among 12 are effective in the design process of stay vane and casing in reaction hydraulic turbines.


2021 ◽  
Author(s):  
Hyeong-Uk Park

Aircraft manufacturing companies have to consider multiple derivatives to satisfy various market requirements. They modify or extend an existing aircraft to meet the new market demands while keeping the development time and the cost to a minimum. Many researchers have studied the derivative design process, but these research considered the baseline and the derivatives together, while using the whole set of design variables. Therefore, an efficient process that can reduce the cost and the time for the aircraft derivative design is needed. In this dissertation, Aircraft Derivative Design Optimization process (ADDOPT) was developed which obtains the global changes from the local changes in the aircraft design to develop the aircraft derivatives efficiently. The sensitivity analysis was implemented to ignore design variables that have low impact on the objective function. This avoids wasting computational effort and time on low priority variables for design requirements and objectives. Additionally, the classification of uncertainty from its characteristics and sources of uncertainty involved in the aircraft design process were suggested to consider with design optimization. Uncertainty from the fidelity of analysis tools was applied in design optimization to increase the probability of optimization results. To handle uncertainty in low fidelity analysis tools on aircraft conceptual design optimization, Reliability Based Design Optimization (RBDO) and Possibility Based Design Optimization (PBDO) methods were performed. In this research, Extended Fourier Amplitude Sensitivity Test (eFAST) method was implemented in ADDOPT for Global Sensitivity Analysis (GSA) method and Collaborative Optimization (CO) based framework with RBDO and PBDO were also used. These methods were evaluated using numerical examples. ADDOPT was carried through on the civil jet aircraft derivative design. The objective of the optimization problem was to increase cruise range while satisfying the requirement such as the number of passengers. The proposed process reduced computation effort by reducing the number of design variables and achieved the target probability of failure when considering uncertainty from low fidelity analysis tools.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Igor Maciejewski ◽  
Tomasz Krzyzynski

The paper deals with the global sensitivity analysis for the purpose of shaping the vibroisolation properties of suspension systems under strictly defined operating conditions. The variance-based method is used to evaluate an influence of nonlinear force characteristics on the system dynamics. The proposed sensitivity indices provide the basis for determining the effect of key design parameters on the vibration isolation performance. The vibration transmissibility behaviour of an exemplary seat suspension system is discussed in order to illustrate the developed methodology.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5057
Author(s):  
Slavomir Hrcek ◽  
Frantisek Brumercik ◽  
Lukas Smetanka ◽  
Michal Lukac ◽  
Branislav Patin ◽  
...  

The aim of the presented study was to perform a global sensitivity analysis of various design parameters affecting the lost motion of the harmonic drive. A detailed virtual model of a harmonic drive was developed, including the wave generator, the flexible ball bearing, the flexible spline and the circular spline. Finite element analyses were performed to observe which parameter from the harmonic drive geometry parameter group affects the lost motion value most. The analyses were carried out using 4% of the rated harmonic drive output torque by the locked wave generator and fixed circular spline according the requirements for the high accuracy harmonic drive units. The described approach was applied to two harmonic drive units with the same ratio, but various dimensions and rated power were used to generalize and interpret the global sensitivity analysis results properly. The most important variable was for both harmonic drives the offset from the nominal tooth shape.


2021 ◽  
Vol 21 (2) ◽  
pp. 89-111
Author(s):  
Arthur Santos Silva ◽  
Enedir Ghisi

Abstract The objective of this study is to investigate the capabilities of different global sensitivity analysis methods applied to building performance simulation, i.e. Morris, Monte Carlo, Design of Experiments, and Sobol methods. A single-zone commercial building located in Florianópolis, southern Brazil, was used as a case study. Fifteen inputs related to design variables were considered, such as thermal properties of the construction envelope, solar orientation, and fenestration characteristics. The performance measures were the annual heating and cooling loads. It was found that each method can provide different visual capabilities and measures of interpretation, but, in general, there was little difference in showing the most influent and least influent variables. For the heating loads, the thermal transmittances were the most influent variables, while for the cooling loads, the solar absorptances stood out. The Morris method showed to be the most feasible method due to its simplicity and low computational cost. However, as the building simulation model is still complex and non-linear, the variance-based method such as the Sobol is still necessary for general purposes.


2021 ◽  
Author(s):  
Hyeong-Uk Park

Aircraft manufacturing companies have to consider multiple derivatives to satisfy various market requirements. They modify or extend an existing aircraft to meet the new market demands while keeping the development time and the cost to a minimum. Many researchers have studied the derivative design process, but these research considered the baseline and the derivatives together, while using the whole set of design variables. Therefore, an efficient process that can reduce the cost and the time for the aircraft derivative design is needed. In this dissertation, Aircraft Derivative Design Optimization process (ADDOPT) was developed which obtains the global changes from the local changes in the aircraft design to develop the aircraft derivatives efficiently. The sensitivity analysis was implemented to ignore design variables that have low impact on the objective function. This avoids wasting computational effort and time on low priority variables for design requirements and objectives. Additionally, the classification of uncertainty from its characteristics and sources of uncertainty involved in the aircraft design process were suggested to consider with design optimization. Uncertainty from the fidelity of analysis tools was applied in design optimization to increase the probability of optimization results. To handle uncertainty in low fidelity analysis tools on aircraft conceptual design optimization, Reliability Based Design Optimization (RBDO) and Possibility Based Design Optimization (PBDO) methods were performed. In this research, Extended Fourier Amplitude Sensitivity Test (eFAST) method was implemented in ADDOPT for Global Sensitivity Analysis (GSA) method and Collaborative Optimization (CO) based framework with RBDO and PBDO were also used. These methods were evaluated using numerical examples. ADDOPT was carried through on the civil jet aircraft derivative design. The objective of the optimization problem was to increase cruise range while satisfying the requirement such as the number of passengers. The proposed process reduced computation effort by reducing the number of design variables and achieved the target probability of failure when considering uncertainty from low fidelity analysis tools.


2014 ◽  
Vol 6 ◽  
pp. 912158
Author(s):  
Qiming Wang ◽  
Peng Jiang ◽  
Xu Kong

Five-hundred-meter aperture spherical radio telescope (FAST) is supported by a cable-net structure, which enables its surface to form a real-time paraboloid by active control. FAST project is currently in the construction and implementation stage. However, there are always a considerable amount of errors that existed in practice which may result in the deviation of the structure from its ideal model or design. Therefore, structural parameter sensitivity analysis was discussed, which is indispensable. However, such deformation operation would lead to about 500 MPa of fatigue stress variation amplitude in the cable-net structure. Optimized deformation strategy is proposed to release the fatigue stress of the cable-net structure, which would be of advantage to improve the reliability of the cable-net structure. In the paper, the variation ranges of structural parameters were rationally determined. Based on local sensitivity analysis and global sensitivity analysis method, finite element model was used to study the effect of different structural parameters on the static behavior. It can be concluded that the effect of several key design parameters such as the cutting length and the elastic modulus of cable on the cable force is significant. The global sensitivity analysis indicates that the cable force range of the cable-net is −19% to 27%.


Author(s):  
Lu Xia ◽  
Meihua Yang ◽  
Lang Li ◽  
Xin Zhang

To deal with the problem of the difficult optimization search and expensive computational cost caused by large-scale design variables, the hierarchical optimization design system based on the global sensitivity analysis method is established in this paper. The M-OAT method is used to analyze the global sensitivity of the design variables, according to the sensitivity information to layer design variables, then optimize the design variables in each hierarchy. Through the study of the hierarchical optimization design of airfoils and wings, compared with the normal parameter optimization design system, the hierarchical optimization design system based on the global sensitivity analysis method can reduce effectively the number of design variables in a single optimization, reduce the difficulty of the optimization search, improve the convergence speed of the optimization, gain better optimization results at the same time. For optimization design with large-scale design variables, the hierarchical optimization design system based on the global sensitivity analysis method is a sort of effective ways of design.


2019 ◽  
Vol 37 (2) ◽  
pp. 591-614
Author(s):  
Enying Li ◽  
Zheng Zhou ◽  
Hu Wang ◽  
Kang Cai

Purpose This study aims to suggest and develops a global sensitivity analysis-assisted multi-level sequential optimization method for the heat transfer problem. Design/methodology/approach Compared with other surrogate-assisted optimization methods, the distinctive characteristic of the suggested method is to decompose the original problem into several layers according to the global sensitivity index. The optimization starts with the several most important design variables by the support vector regression-based efficient global optimization method. Then, when the optimization process progresses, the filtered design variables should be involved in optimization one by one or the setting value. Therefore, in each layer, the design space should be reduced according to the previous optimization result. To improve the accuracy of the global sensitivity index, a novel global sensitivity analysis method based on the variance-based method incorporating a random sampling high-dimensional model representation is introduced. Findings The advantage of this method lies in its capability to solve complicated problems with a limited number of sample points. Moreover, to enhance the reliability of optimum, the support vector regression-based global efficient optimization is used to optimize in each layer. Practical implications The developed optimization tool is built by MATLAB and can be integrated by commercial software, such as ABAQUS and COMSOL. Lastly, this tool is integrated with COMSOL and applied to the plant-fin heat sink design. Compared with the initial temperature, the temperature after design is over 49°. Moreover, the relationships among all design variables are also disclosed clearly. Originality/value The D-MORPH-HDMR is integrated to obtain the coupling relativities among the design variables efficiently. The suggested method can be decomposed into multiplier layers according to the GSI. The SVR-EGO is used to optimize the sub-problem because of its robustness of modeling.


Sign in / Sign up

Export Citation Format

Share Document