scholarly journals Inauthentically Intense: Coveillance and Consumer Culture among Speedsurfers

2015 ◽  
Vol 13 (3/4) ◽  
pp. 487-496 ◽  
Author(s):  
Karl Palmås

This article presents material from a small-scale ethnographic study of a community of windsurfers that use GPS (Global Positioning System) technology to monitor and share their performance online. Following recent debates within Surveillance Studies, these practices are categorised as a form of coveillance. The argument explores the subjectivity produced by the introduction of GPS technology and social media usage in the context of windsurfers. Suggesting that this form of coveillance is yielding a particular consumer culture among its members, the article explores how the GPS-social-media assemblage boosts the desire to consume.

2000 ◽  
Vol 80 (3) ◽  
pp. 405-413 ◽  
Author(s):  
L.W. Turner ◽  
M.C. Udal ◽  
B. T. Larson ◽  
S.A. Shearer

Precision agriculture is already being used commercially to improve variability management in row crop agriculture. In the same way, understanding how spatial and temporal variability of animal, forage, soil and landscape features affect grazing behavior and forage utilization provides potential to modify pasture management, improve efficiency of utilization, and maximize profits. Recent advances in global positioning system (GPS) technology have allowed the development of lightweight GPS collar receivers suitable for monitoring animal position at 5-min intervals. The GPS data can be imported into a geographic information system (GIS) to assess animal behavior characteristics and pasture utilization. This paper describes application and use of GPS technology on intensively managed beef cattle, and implications for livestock behavior and management research on pasture. Key words: Livestock behavior, electronics, grazing, forage, global positioning system, geographic information system


2021 ◽  
Vol 2 (2) ◽  
pp. 104-124
Author(s):  
Muhammad Faisal

The purpose of this research is to design an attendance system using Global Positioning System (GPS) technology, as a useful solution. At PT. Cipta Anugrah Musi for the marketing staff to still be able to do attendance without using a fingerprint attendance machine. Based on the results of research and discussion on the marketing employee attendance monitoring system in the form of this android mobile, the following conclusions can be drawn. From the black box testing that has been done, it can be concluded that the employee attendance monitoring system can run well and there are no problems. GPS technology can provide information on where to take employee photos so that it is easy to find out the position of the employee's absence at that time to avoid cheating in attendance.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Akihiko Sugiura ◽  
Takuya Shoji

A user’s position-specific field has been developed using the Global Positioning System (GPS) technology. To determine the position using cellular phones, a device was developed, in which a pedestrian navigation unit carries the GPS. However, GPS cannot specify a position in a subterranean environment or indoors, which is beyond the reach of transmitted signals. In addition, the position-specification precision of GPS, that is, its resolution, is on the order of several meters, which is deemed insufficient for pedestrians. In this study, we proposed and evaluated a technique for locating a user’s 3D position by setting up a marker in the navigation space detected in the image of a cellular phone. By experiment, we verified the effectiveness and accuracy of the proposed method. Additionally, we improved the positional precision because we measured the position distance using numerous markers.


2015 ◽  
Vol 47 (1) ◽  
pp. 179-188 ◽  
Author(s):  
Javier Mallo ◽  
Esteban Mena ◽  
Fabio Nevado ◽  
Víctor Paredes

AbstractThe aim of this study was to examine the physical demands imposed on professional soccer players during 11-a-side friendly matches in relation to their playing position, using global positioning system (GPS) technology. One hundred and eleven match performances of a Spanish “La Liga” team during the 2010-11 and 2011-12 pre-seasons were selected for analysis. The activities of the players were monitored using GPS technology with a sampling frequency of 1 Hz. Total distance covered, distance in different speed categories, accelerations, and heart rate responses were analyzed in relation to five different playing positions: central defenders (n=23), full-backs (n=20), central midfielders (n=22), wide midfielders (n=26), and forwards (n=20). Distance covered during a match averaged 10.8 km, with wide and central midfielders covering the greatest total distance. Specifically, wide midfielders covered the greatest distances by very high-intensity running (>19.8 km·h-1) and central midfielders by jogging and running (7.2-19.7 km·h-1). On the other hand, central defenders covered the least total distance and at high intensity, although carried out more (p<0.05-0.01) accelerations than forwards, wide midfielders, and fullbacks. The work rate profile of the players obtained with the GPS was very similar to that obtained with semi-automatic image technologies. However, when comparing results from this study with data available in the literature, important differences were detected in the amount of distance covered by sprinting, which suggests that caution should be taken when comparing data obtained with the GPS with other motion analysis systems, especially regarding high-intensity activities.


2007 ◽  
Vol 7 (12) ◽  
pp. 3143-3151 ◽  
Author(s):  
R. Eresmaa ◽  
H. Järvinen ◽  
S. Niemelä ◽  
K. Salonen

Abstract. The ground-based measurements of the Global Positioning System (GPS) allow estimation of the tropospheric delay along the slanted signal paths through the atmosphere. The meteorological exploitation of such slant delay (SD) observations relies on the hypothesis of azimuthal asymmetry of the information content. This article addresses the validity of the hypothesis. A new concept of asymmetricity is introduced for studying the SD observations and their model counterparts. The asymmetricity is defined as the ratio of the absolute asymmetric delay component to total SD. The model counterparts are determined from 3-h forecasts of a numerical weather prediction (NWP) model, run with four different horizontal resolutions. The SD observations are compared with their model counterparts with emphasis on cases of high asymmetricity in order to see whether the observed asymmetry is a real atmospheric signature. The asymmetricity is found to be of the order of a few parts per thousand. Thus, the asymmetric delay component barely exceeds the assumed standard deviation of the SD observation error. However, the observed asymmetric delay components show a statistically significant meteorological signal. Benefit of the asymmetric SD observations is therefore expected to be taken in future, when NWP systems will explicitly represent the small-scale atmospheric features revealed by the SD observations.


Author(s):  
John J. Hall ◽  
Robert L. Williams ◽  
Frank van Graas

Abstract The Department of Mechanical Engineering and the Avionics Engineering Center at Ohio University are developing an electromechanical system for the calibration of an inertial measurement unit (IMU) using global positioning system (GPS) antennas. The GPS antennas and IMU are mounted to a common platform to be oriented in the angular roll, pitch, and yaw motions. Vertical motion is also included to test the systems in a vibrational manner. A four-dof system based on the parallel Carpal Wrist is under development for this task. High-accuracy positioning is not required from the platform since the GPS technology provides absolute positioning for the IMU calibration process.


Sign in / Sign up

Export Citation Format

Share Document