scholarly journals An Analysis of Profile Error for Resharpened Screw Rotor Hob, Relieved with Pencil Type Grinding Wheel.

2002 ◽  
Vol 68 (11) ◽  
pp. 1455-1459
Author(s):  
Satoshi KISHI ◽  
Tomio HORIUCHI ◽  
Muneharu MOROZUMI ◽  
Yoshitaroh YOSHIDA ◽  
Masayuki SAITOH
2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879897 ◽  
Author(s):  
Lijia Tao ◽  
Yu Xing ◽  
Mingxin Yuan ◽  
Sijie Chen

Accuracy of grinding wheel profile that is generated by form grinding theory and formed by grinding wheel dresser is a crucial factor affecting profile accuracy of screw rotors. A correction method for screw rotor profile error based on parameter adjustment for grinding wheel dresser such as diameter and distance of diamond rollers is proposed. Influence of diameter and distance of diamond rollers on grinding wheel profile and screw rotor profile based on theory of segmented dressing method is analyzed, and the adjustment method for parameters of grinding wheel dresser is presented. The results of the analysis provide a theoretical basis for error correction in screw rotor grinding. Grinding experiments for female rotor were performed due to the character that the female rotor has smooth bottom profile where the change of profile error is easy to observe. The experimental results show that the height difference between the long and short sides of rotor profile at the bottom of the rotor is significantly reduced from 0.22 mm to 0.034 mm by adjusting diameter of diamond rollers, and the distance between the long and short sides of the actual rotor profile is almost consistent with the theoretical one by measuring the distance again and adjusting its value in the computer numerical control system. These results verify the correctness of the correction method.


2021 ◽  
Vol 14 (1) ◽  
pp. 23-29
Author(s):  
Hunor András Gyéresi ◽  
Luciana Cristea ◽  
Márton Máté

Abstract The precision of gears has a major influence on the quality of the transmission. If the gear cannot be finished by grinding, the precision of the generating tool becomes essential. Archimedean spiral toothline cylindrical gears are obtained by reciprocate meshing using a milling cutter built up by individual cutters, organized in groups. The profiles of edges must be realized with a minimal profile error. In order to ensure the quality and the precision of the meshed tooth surface, and also the profile constancy after re-sharpening, relief faces must be realized by a grinding relieving operation. A secondary effect of the kinematics of relieving end the spatial extent of the grinding wheel a post undercut results and this produces an inevitable profile error. The present paper discusses a possible grinding wheel setting that produces a maximum theoretical profile error under 1μm along the whole re-sharpening reserve of the cutter. The proposed setting can be realized on a classical relieving lathe.


2010 ◽  
Vol 97-101 ◽  
pp. 4206-4212 ◽  
Author(s):  
Shao Hui Yin ◽  
Feng Jun Chen ◽  
Yu Wang ◽  
Yu Feng Fan ◽  
Yong Jian Zhu ◽  
...  

A compensation method was proposed for correcting wheel setting error and residual form error in nanogrinding of axisymmetric surfaces. In this method, profile data from on-machine measurement were used to obtain the setting error of grinding wheel, as well as the normal residual form error. Compensation model of single-point inclined-axis grinding was built up for generating new compensation path. Grinding test of aspheric tungsten carbide mould was conducted to evaluate performances of the compensation method. A profile error of 182 nm (peak to valley) and average surface roughness of 1.71 nm were achieved. These results indicated that the form error compensation method may significantly improve form accuracy of ground surface.


Author(s):  
Shuying Yang ◽  
Weifang Chen ◽  
Zhiqiang Wang ◽  
Yanfeng Zhou

Gear hob is an important tool that is most used in gear processing. Hob accuracy directly exerts an overwhelming influence on the quality of the processed gear. Generally, the hob tooth profile accuracy is mainly determined by relief grinding process. Studies on tooth profile errors of gear hobs caused by severe friction and cutting with the high-speed rotation of the wheel during the form grinding machining of hobs are limited. Thus, a theoretical model of the tooth profile error prediction under different machining parameters was established based on the analysis of coupling influence of high temperature and high strain rate on gear hobs in the relief grinding process. The model was completed on the basis of the dynamic explicit integral finite element method of thermo-mechanical coupling. Through the prediction model, the influence of the grinding depth ap, feed speed Vw and grinding speed Vs on the tooth profile error can be analysed. In addition, an algorithm for accurately calculate the grinding wheel axial profile by combining instantaneous envelope theory and hob normal tooth profile was proposed. The hob relief grinding experiments were carried out using the proposed grinding wheel profile algorithm. The relative error of the prediction obtained by comparing the calculation results of the prediction model with the experimental results is within 10%. Results prove the validity of the prediction model. This finding is greatly important for optimising the accuracy of hob relief grinding.


2013 ◽  
Vol 774-776 ◽  
pp. 1107-1111
Author(s):  
Yong Qiang Zhao ◽  
Sheng Dun Zhao ◽  
Hong Ling Hou

With the accuracy improvement of twin-screw compressor rotor machining, higher requirement of crew rotor grinded equipment and grinding process is put forward. Based the theory of screw grinding and CNC forming grinding wheel dress technology, the relationship between machine working parameters, CNC grinding wheel dressing parameters and screw rotor grinded process parameters are investigated, and the relationship between CNC grinding wheel dressing parameters and the screw rotor grinded process parameters is established, and its formulas are presented to describe the distances between grinding wheel axis and screw rotor axis. Through these formulas, the CNC wheel dressing program could be designed easily, the performance and efficiency of machine would be improved, and especially the machining quality of screw rotor would be enhanced and becomes more stability.


2021 ◽  
Author(s):  
Xun Li ◽  
Bin Qin ◽  
Ziming WANG ◽  
Yu ZHNAG ◽  
Jianhua YU

Abstract Broaching is commonly used for machining fir tree slots on turbine disk, which has outstandingadvantages and disadvantages, such as high quality machined surface, high manufacturing accuracy and highproductivity as well as fa st tool wear, extremely high processing costs and long preparation time, poor processflexibility. Utilizing the electroplated cubic boron nitride (CBN) profiled grinding wheels and single sided localprofiled grinding process, the experiments of FGH96 tur bine disk slots are carried out. The results show that thehigh precision of slot profile can be achieved by the developed process. Using the given experimental parametersn =48000 rpm, a p =0.002 mm, v f =100 mm/min and 600# electroplated CBN profiled wheel, the profile error ofFGH96 slots is within ±0.012 mm, and the grinding surface roughness is less than Ra0.8 μm. After four whole slotsare machined completely, the grinding wheel still has grinding capability, which proves that 600 # electroplatedCBN prof iled wheel can meet the grinding needs of FGH96 turbine disk slots.


2000 ◽  
Vol 66 (646) ◽  
pp. 1981-1987
Author(s):  
Tomio HORIUCHI ◽  
Satoshi KISHI ◽  
Muneharu MOROZUMI ◽  
Yoshitaroh YOSHIDA ◽  
Masayuki SAITOH

2019 ◽  
Vol 9 (23) ◽  
pp. 5079 ◽  
Author(s):  
Zongmin Liu ◽  
Qian Tang ◽  
Ning Liu ◽  
Pinghua Liang ◽  
Wei Liu

The profile accuracy of screw rotors plays a vital role in stabilizing the meshing operation between mated rotors. Such stability can minimize the vibration and noise, as well as improve the sealing performance and wear resistance. This is the main reason why form grinding is extensively applied as a finishing process to maintain high screw rotor profile accuracy. Since the installation parameters for form grinding wheels affect both the grinding wheel profile accuracy and grinding performance, it is essential to obtain reasonable installation parameters to guarantee the high precision and good grinding performance of form grinding wheels. In this paper, a novel optimization design method for form grinding wheels for screw rotors has been proposed. For the first time, the relationship between the grinding wheel installation parameters and profile accuracy is established to evaluate the grinding performance. A parameterized program has been designed based on space engagement theory. The characteristics of the contact line and profile features of form grinding wheels under different installation parameters have been investigated. Then, the proposed method was employed to select the correct range of installation parameters. To validate the proposed method, a set of experiments, including the manufacture and measurement of several screw rotors, was carried out. The results reveal that the precision of the screw profile is significantly improved compared with the empirical method, thus showing the effectiveness of the proposed method.


Author(s):  
Yu-Ren Wu ◽  
Chung-Wen Fan

The pair of screw rotors is a key element of a twin-screw compressor, and rotor tooth modification has gradually received attention because it can reduce operating compressor noise. Current rotor machining references are mainly related to forming tool design or abrasion of the “horizontal” grinder, but little attention has been paid to form grinding using a “vertical” grinder and simulating the machining flexibility of each grinder axis. Therefore, this paper established a general coordinate system for the screw rotor form grinding and connected it to a vertical five-axis computerized numerical control form grinder to simulate rotor grinding and tooth modification. Further, the influence of a form grinding wheel contour designed by different declination angles of a rotor tooth profile on a grinding rotor tooth and the influence of the motion parameter of each axis on the machining precision of the rotor and the tooth shape are proposed in this paper.


Sign in / Sign up

Export Citation Format

Share Document