Evacuated tube transportation routes: going overhead, at ground level, shallow underground or deeply underground?

Author(s):  
Yaoping Zhang
2011 ◽  
Vol 71-78 ◽  
pp. 4389-4393 ◽  
Author(s):  
Yao Ping Zhang ◽  
Jian Yue Yu ◽  
Yong Zhao ◽  
Ben Lin Liu

Based on some special merits such as self-stability, energy-consuming-efficiency, less pollution, high reliability, and so on, high temperature superconducting maglev (HTSM) is one of the promising potential technologies among present Maglev technologies for the future evacuated tube transportation (ETT). In this paper, the possibility, the merits, and the demerits of the applications of HTSM in ETT system are investigated. Especially, two application issues, liquid nitrogen vessel on the vehicle and isolated gate set in ETT, are discussed and solutions are suggested. On the first issue, this paper suggests to install a pressure relief valve on the sealed liquid nitrogen vessel so as to reduce the liquid nitrogen vaporization in the vacuum tube. As for the second issue, this paper recommends to use HTSM permanent magnet (PM) track structure with a streamline separated gap between the surface of track and the bottom of liquid nitrogen vessel. Those guideway structure could fit to the isolation gate setting in ETT.


2013 ◽  
Vol 561 ◽  
pp. 454-459 ◽  
Author(s):  
Qing Ling Li ◽  
Wen Guang Jia ◽  
Chen Guang Dong ◽  
Rui Xiang Duan

According to the three-dimensional mathematical model and physical model of evacuated tube transportation(ETT) system, thermal-pressure coupling equations based on viscous fluid Navier-Stokes equation and k- ε turbulence model are established for the first time. The numerical simulation is carried out to investigate the inherent laws for different blockage ratios of ETT system. The simulation results show that: when the speed of the train and the pressure of the system are constants, in the temperature field, the aerodynamic heating is getting more as the blockage ratio increases, and its trend grows exponential. In the pressure field, with the increase of the blockage ratio, the stagnation pressure is gradually increased, but the growth is getting slower; vortex region pressure reduces gradually, and has accelerated the decreasing trend; the pressure difference between the head and the end of the train is linear increment.


2011 ◽  
Vol 19 (3) ◽  
pp. 181-185 ◽  
Author(s):  
Yaoping Zhang ◽  
Benlin Liu ◽  
Yong Zhao

2013 ◽  
Vol 307 ◽  
pp. 156-160
Author(s):  
Yao Ping Zhang

Because of reducing aerodynamic drag, the maglev train could run at a high-speed in the partial vacuum tube. Scientists of some conutries such as U.S., Swiss and China, have started the research work on high-speed tube trains. In this situation, evacuated tube transportation aerodynamics becomes an important theory research aspect, in which the main study content is how to calculate aerodynamic drag. Based on the explicit formula for estimating aerodynamic drag on moving body in an infinite boundary surroundings put up by Isaac Newton, the evacuated tube surroundings is analyzed and the explicit formula with blockage ratio as an independent variable for estimating aerodynamic drag acted on trains running in the evacuated tube which is a finite space is deduced. With the calculation case, compared with the results came out from the explicit formula got in this paper and the results got by Fluent software, it was found that those results are closed. Thus, the explicit formula created in this paper for conveniently estimating aerodynamic drag based on trains running in evacuated tube transportation is credible.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1239 ◽  
Author(s):  
Guo ◽  
Li ◽  
Zhou

This paper focuses on the study of a null-flux coil electrodynamic suspension structure for evacuated tube transportation (ETT). A Maglev system in evacuated tubes is a promising concept for high speed transportation systems, and the design of levitation structure is a critical part among the subsystems. The whole system with functions of levitation, guidance, and propulsion is proposed in this paper, and the utilization of magnetic fields from both sides of magnets makes the system simple. The figure eight shaped null-flux coil suspension structure is adopted to provide a high levitation-drag ratio. The equivalent circuit model of the null-flux coil structure is established by employing the dynamic circuit theory. Based on the determination of the mutual inductance between the null-flux coil and the moving magnet, electromagnetic forces are calculated through an energy method. The validity of the dynamic circuit model is verified by comparing the calculation with the 3D finite element analysis (FEM) results, and the working principle of the null-flux coil structure is described. The effects of vehicle speed and the time constant of the coil on the electromagnetic forces are studied at the bottom level of force impulses in one coil and verified by FEM simulation. The characteristics of electrodynamic forces as functions of the magnet speed, the vertical displacements, and the lateral displacements are investigated based on the dynamic circuit theory, and the levitation-drag ratio is compared with that of plate type structure. The results show that the proposed structure is a promising option for application in ETT, and the following study will focus on the dynamic research of the electrodynamic suspension (EDS) system.


2012 ◽  
Vol 32 ◽  
pp. 743-747 ◽  
Author(s):  
Y.P. Zhang ◽  
S.S. Li ◽  
M.X. Wang

Sign in / Sign up

Export Citation Format

Share Document