scholarly journals Statistical approach to identify Naples city’s real driving cycle referring to the Worldwide harmonized Light duty Test Cycle (WLTC) framework

Author(s):  
L. Della Ragione ◽  
G. Meccariello
Author(s):  
Meng Lyu ◽  
Xiaofeng Bao ◽  
Yunjing Wang ◽  
Ronald Matthews

Vehicle emissions standards and regulations remain weak in high-altitude regions. In this study, vehicle emissions from both the New European Driving Cycle and the Worldwide harmonized Light-duty driving Test Cycle were analyzed by employing on-road test data collected from typical roads in a high-altitude city. On-road measurements were conducted on five light-duty vehicles using a portable emissions measurement system. The certification cycle parameters were synthesized from real-world driving data using the vehicle specific power methodology. The analysis revealed that under real-world driving conditions, all emissions were generally higher than the estimated values for both the New European Driving Cycle and Worldwide harmonized Light-duty driving Test Cycle. Concerning emissions standards, more CO, NOx, and hydrocarbons were emitted by China 3 vehicles than by China 4 vehicles, whereas the CO2 emissions exhibited interesting trends with vehicle displacement and emissions standards. These results have potential implications for policymakers in regard to vehicle emissions management and control strategies aimed at emissions reduction, fleet inspection, and maintenance programs.


2018 ◽  
Vol 184 ◽  
pp. 01020
Author(s):  
Norbert Bagameri ◽  
Bogdan Varga ◽  
Aron Csato ◽  
Dan Moldovanu

The European Commission has been actively involved in the development of the World-wide harmonized Light duty Test Cycle (WLTC). The aim of that project was to develop a harmonized light duty test cycle, that represents the average driving characteristics around the world and to have a legislative world-wide-harmonized procedure put in place from 2017 and onwards for determining the level of CO2 emissions. This work presents the results of the effect of automatic and manual transmissions as a drivetrain of a light duty vehicle on WLTC driving cycle. AVL Cruise software was used as simulation platform to analyse the CO2 level and fuel consumption of dynamic vehicle model using different type of drivetrains. At first the simulation tool and the most influential parameters of the driving cycle procedure are described. In the second phase various components and modules for both dynamic models using automatic and manual transmission, as well as the respective input parameters, were defined. Analyses are based on a developed dynamic vehicle model in AVL Cruise. Finally, the simulation results were evaluated and presented for the two dynamic models according to a legislative driving cycle to provide the basis fuel consumption and exhaust gas emissions.


2021 ◽  
Vol 241 ◽  
pp. 02002
Author(s):  
Yu Liu ◽  
Yongkai Liang ◽  
Hanzhengnan Yu ◽  
Xiaopan An ◽  
Jingyuan Li

In 2019, China issued the first national standard for vehicle driving cycle, in which China light-duty vehicle test cycle for passenger car (CLTC-P) is the driving cycle for light-duty passenger cars. CLTC-P is of great significance to the development of China’s automobile industry, and has a great impact on the development and calibration of vehicles of automobile enterprises. In this paper, firstly, the driving characteristics of CLTC-P are analyzed systematically. Then it is compared with the third-party navigation big data to prove the rationality and effectiveness. Finally, CLTC-P is compared with other legal cycles in terms of time, distance, speed, and acceleration characteristics. The result shows that by comparing the characteristics of CLTC-P with other typical cycles and the GIS weighted results, the CLTC-P is more in line with Chinese reality and is significantly different from other typical cycles.


Author(s):  
Jakub Lasocki

The World-wide harmonised Light-duty Test Cycle (WLTC) was developed internationally for the determination of pollutant emission and fuel consumption from combustion engines of light-duty vehicles. It replaced the New European Driving Cycle (NEDC) used in the European Union (EU) for type-approval testing purposes. This paper presents an extensive comparison of the WLTC and NEDC. The main specifications of both driving cycles are provided, and their advantages and limitations are analysed. The WLTC, compared to the NEDC, is more dynamic, covers a broader spectrum of engine working states and is more realistic in simulating typical real-world driving conditions. The expected impact of the WLTC on vehicle engine performance characteristics is discussed. It is further illustrated by a case study on two light-duty vehicles tested in the WLTC and NEDC. Findings from the investigation demonstrated that the driving cycle has a strong impact on the performance characteristics of the vehicle combustion engine. For the vehicles tested, the average engine speed, engine torque and fuel flow rate measured over the WLTC are higher than those measured over the NEDC. The opposite trend is observed in terms of fuel economy (expressed in l/100 km); the first vehicle achieved a 9% reduction, while the second – a 3% increase when switching from NEDC to WLTC. Several factors potentially contributing to this discrepancy have been pointed out. The implementation of the WLTC in the EU will force vehicle manufacturers to optimise engine control strategy according to the operating range of the new driving cycle.


Fuel ◽  
2015 ◽  
Vol 143 ◽  
pp. 173-182 ◽  
Author(s):  
R. Suarez-Bertoa ◽  
A.A. Zardini ◽  
H. Keuken ◽  
C. Astorga
Keyword(s):  

2019 ◽  
Vol 20 (10) ◽  
pp. 1047-1058 ◽  
Author(s):  
Giovanni Vagnoni ◽  
Markus Eisenbarth ◽  
Jakob Andert ◽  
Giuseppe Sammito ◽  
Joschka Schaub ◽  
...  

The increasing connectivity of future vehicles allows the prediction of the powertrain operational profiles. This technology will improve the transient control of the engine and its exhaust gas aftertreatment systems. This article describes the development of a rule-based algorithm for the air path control, which uses the knowledge of upcoming driving events to reduce especially [Formula: see text] and particulate (soot) emissions. In the first section of this article, the boosting and the lean [Formula: see text] trap systems of a diesel powertrain are investigated as relevant sub-systems for shorter prediction horizons, suitable for Car-to-X communication range. Reference control strategies, based on state-of-the-art engine control unit algorithms and suitable predictive control logics, are compared for the two sub-systems in a model in the loop simulation environment. The simulation driving cycles are based on Worldwide harmonized Light-duty Test Cycle and Real Driving Emissions regulations. Due to the shorter, and consequently more probable, prediction horizon and the demonstrated emission improvements, a dedicated rule-based algorithm for the air path control is developed and benchmarked in the Worldwide harmonized Light-duty Test Cycle as described in the second part of this article. Worldwide harmonized Light-duty Test Cycle test results show an improvement potential for engine-out soot and [Formula: see text] emissions of up to 5.2% and 1.2%, respectively, for the air path case and a reduction of the average fuel consumption in Real Driving Emissions of up to 1% for the lean NOx trap case. In addition, the developed rule-based algorithm allows the adjustment of the desired NOx–soot trade-off, while keeping the fuel consumption constant. The study concludes with brief recommendations for future research directions, as for example, the introduction of a prediction module for the estimation of the vehicle operational profile in the prediction horizon.


2015 ◽  
Vol 22 (10) ◽  
pp. 7450-7460 ◽  
Author(s):  
Ricardo Suarez-Bertoa ◽  
Alessandro A. Zardini ◽  
Velizara Lilova ◽  
Daniel Meyer ◽  
Shigeru Nakatani ◽  
...  

Author(s):  
Kyle E. Niemeyer ◽  
Shane R. Daly ◽  
William J. Cannella ◽  
Christopher L. Hagen

Low-temperature combustion (LTC) engine concepts such as homogeneous charge compression ignition (HCCI) offer the potential of improved efficiency and reduced emissions of nitrogen oxide (NOx) and particulates. However, engines can only successfully operate in HCCI mode for limited operating ranges that vary depending on the fuel composition. Unfortunately, traditional ratings such as octane number (ON) poorly predict the auto-ignition behavior of fuels in such engine modes, and metrics recently proposed for HCCI engines have areas of improvement when wide ranges of fuels are considered. In this study, a new index for ranking fuel suitability for LTC engines was defined, based on the fraction of potential fuel savings achieved in the federal test procedure (FTP-75) light-duty vehicle driving cycle. Driving cycle simulations were performed using a typical light-duty passenger vehicle, providing pairs of engine speed and load points. Separately, single-zone naturally aspirated HCCI engine simulations were performed for a variety of fuels in order to determine the operating envelopes for each. These results were combined to determine the varying improvement in fuel economy offered by fuels, forming the basis for a fuel performance index. Results showed that, in general, lower octane fuels performed better, resulting in higher LTC fuel index values; however, ON alone did not predict fuel performance.


Sign in / Sign up

Export Citation Format

Share Document