scholarly journals Revisiting Unrestricted Rebut and Preferences in Structured Argumentation.

Author(s):  
Jesse Heyninck ◽  
Christian Straßer

In structured argumentation frameworks such as ASPIC+, rebuts are only allowed in conclusions produced by defeasible rules. This has been criticized as counter-intuitive especially in dialectical contexts. In this paper we show that ASPIC-, a system allowing for unrestricted rebuts, suffers from contamination problems. We remedy this shortcoming by generalizing the attack rule of unrestricted rebut. Our resulting system satisfies the usual rationality postulates for prioritized rule bases.

Author(s):  
Marcello D'Agostino ◽  
Sanjay Modgil

ASPIC+ is an established general framework for argumentation and non-monotonic reasoning. However, ASPIC+ does not satisfy the non-contamination rationality postulates, and moreover, tacitly assumes unbounded resources when demonstrating satisfaction of the consistency postulates. In this paper we present a new version of ASPIC+ – Dialectial ASPIC+ – that is fully rational under resource bounds.


2021 ◽  
Author(s):  
Carl Corea ◽  
Matthias Thimm ◽  
Patrick Delfmann

We investigate inconsistency and culpability measures for multisets of business rule bases. As companies might encounter thousands of rule bases daily, studying not only individual rule bases separately, but rather also their interrelations, becomes necessary. As current works on inconsistency measurement focus on assessing individual rule bases, we therefore present an extension of those works in the domain of business rules management. We show how arbitrary culpability measures (for single rule bases) can be automatically transformed for multisets, propose new rationality postulates for this setting, and investigate the complexity of central aspects regarding multi-rule base inconsistency measurement.


Author(s):  
Fangyi Li ◽  
Changjing Shang ◽  
Ying Li ◽  
Jing Yang ◽  
Qiang Shen

AbstractApproximate reasoning systems facilitate fuzzy inference through activating fuzzy if–then rules in which attribute values are imprecisely described. Fuzzy rule interpolation (FRI) supports such reasoning with sparse rule bases where certain observations may not match any existing fuzzy rules, through manipulation of rules that bear similarity with an unmatched observation. This differs from classical rule-based inference that requires direct pattern matching between observations and the given rules. FRI techniques have been continuously investigated for decades, resulting in various types of approach. Traditionally, it is typically assumed that all antecedent attributes in the rules are of equal significance in deriving the consequents. Recent studies have shown significant interest in developing enhanced FRI mechanisms where the rule antecedent attributes are associated with relative weights, signifying their different importance levels in influencing the generation of the conclusion, thereby improving the interpolation performance. This survey presents a systematic review of both traditional and recently developed FRI methodologies, categorised accordingly into two major groups: FRI with non-weighted rules and FRI with weighted rules. It introduces, and analyses, a range of commonly used representatives chosen from each of the two categories, offering a comprehensive tutorial for this important soft computing approach to rule-based inference. A comparative analysis of different FRI techniques is provided both within each category and between the two, highlighting the main strengths and limitations while applying such FRI mechanisms to different problems. Furthermore, commonly adopted criteria for FRI algorithm evaluation are outlined, and recent developments on weighted FRI methods are presented in a unified pseudo-code form, easing their understanding and facilitating their comparisons.


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Mazen Mohamad ◽  
Jan-Philipp Steghöfer ◽  
Riccardo Scandariato

AbstractSecurity Assurance Cases (SAC) are a form of structured argumentation used to reason about the security properties of a system. After the successful adoption of assurance cases for safety, SAC are getting significant traction in recent years, especially in safety-critical industries (e.g., automotive), where there is an increasing pressure to be compliant with several security standards and regulations. Accordingly, research in the field of SAC has flourished in the past decade, with different approaches being investigated. In an effort to systematize this active field of research, we conducted a systematic literature review (SLR) of the existing academic studies on SAC. Our review resulted in an in-depth analysis and comparison of 51 papers. Our results indicate that, while there are numerous papers discussing the importance of SAC and their usage scenarios, the literature is still immature with respect to concrete support for practitioners on how to build and maintain a SAC. More importantly, even though some methodologies are available, their validation and tool support is still lacking.


2016 ◽  
Vol 49 ◽  
pp. 149-166 ◽  
Author(s):  
Andrea Cohen ◽  
Alejandro J. García ◽  
Guillermo R. Simari

Author(s):  
M. Affan Badar ◽  
Rao R. Guntur

Abstract Various methods for designing hydrodynamic partial journal bearings are reviewed and an integrated and dependable design procedure is (developed. Knowledge and rule bases pertaining to the design of journal bearings having arcs of 180°, 120°. and 60° are either gathered or derived and represented properly. An expert system is developed using the databases and rulebases. The bearing design is based on one of the following decision criteria: the maximum load, the minimum friction, or the optimal clearance The expert system makes an exhaustive search for all the design solutions. Utility value of each of the final solutions is calculated and the design solutions having utility values above a certain limit are stored The results are presented to demonstrate the usefulness of the knowledge-based approach.


Sign in / Sign up

Export Citation Format

Share Document