scholarly journals Going Deeper with Densely Connected Convolutional Neural Networks for Multispectral Pansharpening

2019 ◽  
Vol 11 (22) ◽  
pp. 2608 ◽  
Author(s):  
Dong Wang ◽  
Ying Li ◽  
Li Ma ◽  
Zongwen Bai ◽  
Jonathan Chan

In recent years, convolutional neural networks (CNNs) have shown promising performance in the field of multispectral (MS) and panchromatic (PAN) image fusion (MS pansharpening). However, the small-scale data and the gradient vanishing problem have been preventing the existing CNN-based fusion approaches from leveraging deeper networks that potentially have better representation ability to characterize the complex nonlinear mapping relationship between the input (source) and the targeting (fused) images. In this paper, we introduce a very deep network with dense blocks and residual learning to tackle these problems. The proposed network takes advantage of dense connections in dense blocks that have connections for arbitrarily two convolution layers to facilitate gradient flow and implicit deep supervision during training. In addition, reusing feature maps can reduce the number of parameters, which is helpful for reducing overfitting that resulted from small-scale data. Residual learning is explored to reduce the difficulty for the model to generate the MS image with high spatial resolution. The proposed network is evaluated via experiments on three datasets, achieving competitive or superior performance, e.g. the spectral angle mapper (SAM) is decreased over 10% on GaoFen-2, when compared with other state-of-the-art methods.

Author(s):  
Chunlei Liu ◽  
Wenrui Ding ◽  
Xin Xia ◽  
Yuan Hu ◽  
Baochang Zhang ◽  
...  

Binarized  convolutional neural networks (BCNNs) are widely used to improve memory and computation efficiency of deep convolutional neural networks (DCNNs) for mobile and AI chips based applications. However, current BCNNs are not able to fully explore their corresponding full-precision models, causing a significant performance gap between them. In this paper, we propose rectified binary convolutional networks (RBCNs), towards optimized BCNNs, by combining full-precision kernels and feature maps to rectify the binarization process in a unified framework. In particular, we use a GAN to train the 1-bit binary network with the guidance of its corresponding full-precision model, which significantly improves the performance of BCNNs. The rectified convolutional layers are generic and flexible, and can be easily incorporated into existing DCNNs such as WideResNets and ResNets. Extensive experiments demonstrate the superior performance of the proposed RBCNs over state-of-the-art BCNNs. In particular, our method shows strong generalization on the object tracking task.


2019 ◽  
Vol 277 ◽  
pp. 02024 ◽  
Author(s):  
Lincan Li ◽  
Tong Jia ◽  
Tianqi Meng ◽  
Yizhe Liu

In this paper, an accurate two-stage deep learning method is proposed to detect vulnerable plaques in ultrasonic images of cardiovascular. Firstly, a Fully Convonutional Neural Network (FCN) named U-Net is used to segment the original Intravascular Optical Coherence Tomography (IVOCT) cardiovascular images. We experiment on different threshold values to find the best threshold for removing noise and background in the original images. Secondly, a modified Faster RCNN is adopted to do precise detection. The modified Faster R-CNN utilize six-scale anchors (122,162,322,642,1282,2562) instead of the conventional one scale or three scale approaches. First, we present three problems in cardiovascular vulnerable plaque diagnosis, then we demonstrate how our method solve these problems. The proposed method in this paper apply deep convolutional neural networks to the whole diagnostic procedure. Test results show the Recall rate, Precision rate, IoU (Intersection-over-Union) rate and Total score are 0.94, 0.885, 0.913 and 0.913 respectively, higher than the 1st team of CCCV2017 Cardiovascular OCT Vulnerable Plaque Detection Challenge. AP of the designed Faster RCNN is 83.4%, higher than conventional approaches which use one-scale or three-scale anchors. These results demonstrate the superior performance of our proposed method and the power of deep learning approaches in diagnose cardiovascular vulnerable plaques.


2021 ◽  
Vol 11 (5) ◽  
pp. 2284
Author(s):  
Asma Maqsood ◽  
Muhammad Shahid Farid ◽  
Muhammad Hassan Khan ◽  
Marcin Grzegorzek

Malaria is a disease activated by a type of microscopic parasite transmitted from infected female mosquito bites to humans. Malaria is a fatal disease that is endemic in many regions of the world. Quick diagnosis of this disease will be very valuable for patients, as traditional methods require tedious work for its detection. Recently, some automated methods have been proposed that exploit hand-crafted feature extraction techniques however, their accuracies are not reliable. Deep learning approaches modernize the world with their superior performance. Convolutional Neural Networks (CNN) are vastly scalable for image classification tasks that extract features through hidden layers of the model without any handcrafting. The detection of malaria-infected red blood cells from segmented microscopic blood images using convolutional neural networks can assist in quick diagnosis, and this will be useful for regions with fewer healthcare experts. The contributions of this paper are two-fold. First, we evaluate the performance of different existing deep learning models for efficient malaria detection. Second, we propose a customized CNN model that outperforms all observed deep learning models. It exploits the bilateral filtering and image augmentation techniques for highlighting features of red blood cells before training the model. Due to image augmentation techniques, the customized CNN model is generalized and avoids over-fitting. All experimental evaluations are performed on the benchmark NIH Malaria Dataset, and the results reveal that the proposed algorithm is 96.82% accurate in detecting malaria from the microscopic blood smears.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2381
Author(s):  
Jaewon Lee ◽  
Hyeonjeong Lee ◽  
Miyoung Shin

Mental stress can lead to traffic accidents by reducing a driver’s concentration or increasing fatigue while driving. In recent years, demand for methods to detect drivers’ stress in advance to prevent dangerous situations increased. Thus, we propose a novel method for detecting driving stress using nonlinear representations of short-term (30 s or less) physiological signals for multimodal convolutional neural networks (CNNs). Specifically, from hand/foot galvanic skin response (HGSR, FGSR) and heart rate (HR) short-term input signals, first, we generate corresponding two-dimensional nonlinear representations called continuous recurrence plots (Cont-RPs). Second, from the Cont-RPs, we use multimodal CNNs to automatically extract FGSR, HGSR, and HR signal representative features that can effectively differentiate between stressed and relaxed states. Lastly, we concatenate the three extracted features into one integrated representation vector, which we feed to a fully connected layer to perform classification. For the evaluation, we use a public stress dataset collected from actual driving environments. Experimental results show that the proposed method demonstrates superior performance for 30-s signals, with an overall accuracy of 95.67%, an approximately 2.5–3% improvement compared with that of previous works. Additionally, for 10-s signals, the proposed method achieves 92.33% classification accuracy, which is similar to or better than the performance of other methods using long-term signals (over 100 s).


2021 ◽  
Author(s):  
Veerayuth Kittichai ◽  
Morakot Kaewthamasorn ◽  
Suchansa Thanee ◽  
Rangsan Jomtarak ◽  
Kamonpob Klanboot ◽  
...  

Abstract Background: The infections of an avian malaria parasite (Plasmodium gallinaceum) in domestic chickens presents a major threat to poultry industry because it cause economical loss in both quality and quantity of meat and egg productions. Deep learning algorithms have been developed to identify avian malaria infections and classify its blood stage development. Methods: In this study, four types of deep convolutional neural networks namely Darknet, Darknet19, darknet19_448x448 and Densenet 201 are used to classify P. gallinaceum blood stages. We randomly collected dataset of 10,548 single-cell images consisting of four parasite stages from ten-infected blood films stained by Giemsa. All images were confirmed by three well-trained examiners. Results: In the model-wise comparison, the four neural network models gave us high values in the mean average precision at least 95%. Darknet can reproduce a superior performance in classification of the P. gallinaceum development stages across any other model architectures. In addition, Darknet also has best performance in multiple class-wise classification, scoring the average values of greater than 99% in accuracy, specificity, sensitivity, precision, and F1-score.Conclusions: Therefore, Darknet model is more suitable in the classification of P. gallinaceum blood stages than the other three models. The result may contribute us to develop the rapid screening tool for further assist non-expert in filed study where is lack of specific instrument for avian malaria diagnostic.


2019 ◽  
Vol 11 (18) ◽  
pp. 2176 ◽  
Author(s):  
Chen ◽  
Zhong ◽  
Tan

Detecting objects in aerial images is a challenging task due to multiple orientations and relatively small size of the objects. Although many traditional detection models have demonstrated an acceptable performance by using the imagery pyramid and multiple templates in a sliding-window manner, such techniques are inefficient and costly. Recently, convolutional neural networks (CNNs) have successfully been used for object detection, and they have demonstrated considerably superior performance than that of traditional detection methods; however, this success has not been expanded to aerial images. To overcome such problems, we propose a detection model based on two CNNs. One of the CNNs is designed to propose many object-like regions that are generated from the feature maps of multi scales and hierarchies with the orientation information. Based on such a design, the positioning of small size objects becomes more accurate, and the generated regions with orientation information are more suitable for the objects arranged with arbitrary orientations. Furthermore, another CNN is designed for object recognition; it first extracts the features of each generated region and subsequently makes the final decisions. The results of the extensive experiments performed on the vehicle detection in aerial imagery (VEDAI) and overhead imagery research data set (OIRDS) datasets indicate that the proposed model performs well in terms of not only the detection accuracy but also the detection speed.


Author(s):  
Le Hui ◽  
Xiang Li ◽  
Chen Gong ◽  
Meng Fang ◽  
Joey Tianyi Zhou ◽  
...  

Convolutional Neural Networks (CNNs) have shown great power in various classification tasks and have achieved remarkable results in practical applications. However, the distinct learning difficulties in discriminating different pairs of classes are largely ignored by the existing networks. For instance, in CIFAR-10 dataset, distinguishing cats from dogs is usually harder than distinguishing horses from ships. By carefully studying the behavior of CNN models in the training process, we observe that the confusion level of two classes is strongly correlated with their angular separability in the feature space. That is, the larger the inter-class angle is, the lower the confusion will be. Based on this observation, we propose a novel loss function dubbed “Inter-Class Angular Loss” (ICAL), which explicitly models the class correlation and can be directly applied to many existing deep networks. By minimizing the proposed ICAL, the networks can effectively discriminate the examples in similar classes by enlarging the angle between their corresponding class vectors. Thorough experimental results on a series of vision and nonvision datasets confirm that ICAL critically improves the discriminative ability of various representative deep neural networks and generates superior performance to the original networks with conventional softmax loss.


2020 ◽  
Vol 12 (3) ◽  
pp. 408
Author(s):  
Małgorzata Krówczyńska ◽  
Edwin Raczko ◽  
Natalia Staniszewska ◽  
Ewa Wilk

Due to the pathogenic nature of asbestos, a statutory ban on asbestos-containing products has been in place in Poland since 1997. In order to protect human health and the environment, it is crucial to estimate the quantity of asbestos–cement products in use. It has been evaluated that about 90% of them are roof coverings. Different methods are used to estimate the amount of asbestos–cement products, such as the use of indicators, field inventory, remote sensing data, and multi- and hyperspectral images; the latter are used for relatively small areas. Other methods are sought for the reliable estimation of the quantity of asbestos-containing products, as well as their spatial distribution. The objective of this paper is to present the use of convolutional neural networks for the identification of asbestos–cement roofing on aerial photographs in natural color (RGB) and color infrared (CIR) compositions. The study was conducted for the Chęciny commune. Aerial photographs, each with the spatial resolution of 25 cm in RGB and CIR compositions, were used, and field studies were conducted to verify data and to develop a database for Convolutional Neural Networks (CNNs) training. Network training was carried out using the TensorFlow and R-Keras libraries in the R programming environment. The classification was carried out using a convolutional neural network consisting of two convolutional blocks, a spatial dropout layer, and two blocks of fully connected perceptrons. Asbestos–cement roofing products were classified with the producer’s accuracy of 89% and overall accuracy of 87% and 89%, depending on the image composition used. Attempts have been made at the identification of asbestos–cement roofing. They focus primarily on the use of hyperspectral data and multispectral imagery. The following classification algorithms were usually employed: Spectral Angle Mapper, Support Vector Machine, object classification, Spectral Feature Fitting, and decision trees. Previous studies undertaken by other researchers showed that low spectral resolution only allowed for a rough classification of roofing materials. The use of one coherent method would allow data comparison between regions. Determining the amount of asbestos–cement products in use is important for assessing environmental exposure to asbestos fibres, determining patterns of disease, and ultimately modelling potential solutions to counteract threats.


Author(s):  
Sandeep Chandra Bollepalli ◽  
Rahul K. Sevakula ◽  
Wan‐Tai M. Au‐Yeung ◽  
Mohamad B. Kassab ◽  
Faisal M. Merchant ◽  
...  

Background Accurate detection of arrhythmic events in the intensive care units (ICU) is of paramount significance in providing timely care. However, traditional ICU monitors generate a high rate of false alarms causing alarm fatigue. In this work, we develop an algorithm to improve life threatening arrhythmia detection in the ICUs using a deep learning approach. Methods and Results This study involves a total of 953 independent life‐threatening arrhythmia alarms generated from the ICU bedside monitors of 410 patients. Specifically, we used the ECG (4 channels), arterial blood pressure, and photoplethysmograph signals to accurately detect the onset and offset of various arrhythmias, without prior knowledge of the alarm type. We used a hybrid convolutional neural network based classifier that fuses traditional handcrafted features with features automatically learned using convolutional neural networks. Further, the proposed architecture remains flexible to be adapted to various arrhythmic conditions as well as multiple physiological signals. Our hybrid‐ convolutional neural network approach achieved superior performance compared with methods which only used convolutional neural network. We evaluated our algorithm using 5‐fold cross‐validation for 5 times and obtained an accuracy of 87.5%±0.5%, and a score of 81%±0.9%. Independent evaluation of our algorithm on the publicly available PhysioNet 2015 Challenge database resulted in overall classification accuracy and score of 93.9% and 84.3%, respectively, indicating its efficacy and generalizability. Conclusions Our method accurately detects multiple arrhythmic conditions. Suitable translation of our algorithm may significantly improve the quality of care in ICUs by reducing the burden of false alarms.


Sign in / Sign up

Export Citation Format

Share Document