scholarly journals STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems

Author(s):  
Jiani Zhang ◽  
Xingjian Shi ◽  
Shenglin Zhao ◽  
Irwin King

We propose a new STAcked and Reconstructed Graph Convolutional Networks (STAR-GCN) architecture to learn node representations for boosting the performance in recommender systems, especially in the cold start scenario. STAR-GCN employs a stack of GCN encoder-decoders combined with intermediate supervision to improve the final prediction performance. Unlike the graph convolutional matrix completion model with one-hot encoding node inputs, our STAR-GCN learns low-dimensional user and item latent factors as the input to restrain the model space complexity. Moreover, our STAR-GCN can produce node embeddings for new nodes by reconstructing masked input node embeddings, which essentially tackles the cold start problem. Furthermore, we discover a label leakage issue when training GCN-based models for link prediction tasks and propose a training strategy to avoid the issue. Empirical results on multiple rating prediction benchmarks demonstrate our model achieves state-of-the-art performance in four out of five real-world datasets and significant improvements in predicting ratings in the cold start scenario. The code implementation is available in https://github.com/jennyzhang0215/STAR-GCN.

2019 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Emelia Opoku Aboagye ◽  
Rajesh Kumar

We approach scalability and cold start problems of collaborative recommendation in this paper. An intelligent hybrid filtering framework that maximizes feature engineering and solves cold start problem for personalized recommendation based on deep learning is proposed in this paper. Present e-commerce sites mainly recommend pertinent items or products to a lot of users through personalized recommendation. Such personalization depends on large extent on scalable systems which strategically responds promptly to the request of the numerous users accessing the site (new users). Tensor Factorization (TF) provides scalable and accurate approach for collaborative filtering in such environments. In this paper, we propose a hybrid-based system to address scalability problems in such environments. We propose to use a multi-task approach which represent multiview data from users, according to their purchasing and rating history. We use a Deep Learning approach to map item and user inter-relationship to a low dimensional feature space where item-user resemblance and their preferred items is maximized. The evaluation results from real world datasets show that, our novel deep learning multitask tensor factorization (NeuralFil) analysis is computationally less expensive, scalable and addresses the cold-start problem through explicit multi-task approach for optimal recommendation decision making.


2021 ◽  
pp. 1-12
Author(s):  
Shangju Deng ◽  
Jiwei Qin

Tensors have been explored to share latent user-item relations and have been shown to be effective for recommendation. Tensors suffer from sparsity and cold start problems in real recommendation scenarios; therefore, researchers and engineers usually use matrix factorization to address these issues and improve the performance of recommender systems. In this paper, we propose matrix factorization completed multicontext data for tensor-enhanced algorithm a using matrix factorization combined with a multicontext data method for tensor-enhanced recommendation. To take advantage of existing user-item data, we add the context time and trust to enrich the interactive data via matrix factorization. In addition, Our approach is a high-dimensional tensor framework that further mines the latent relations from the user-item-trust-time tensor to improve recommendation performance. Through extensive experiments on real-world datasets, we demonstrated the superiority of our approach in predicting user preferences. This method is also shown to be able to maintain satisfactory performance even if user-item interactions are sparse.


2018 ◽  
Vol 45 (5) ◽  
pp. 607-642 ◽  
Author(s):  
Sajad Ahmadian ◽  
Mohsen Afsharchi ◽  
Majid Meghdadi

Trust-aware recommender systems are advanced approaches which have been developed based on social information to provide relevant suggestions to users. These systems can alleviate cold start and data sparsity problems in recommendation methods through trust relations. However, the lack of sufficient trust information can reduce the efficiency of these methods. Moreover, diversity and novelty are important measures for providing more attractive suggestions to users. In this article, a reputation-based approach is proposed to improve trust-aware recommender systems by enhancing rating profiles of the users who have insufficient ratings and trust information. In particular, we use a user reliability measure to determine the effectiveness of the rating profiles and trust networks of users in predicting unseen items. Then, a novel user reputation model is introduced based on the combination of the rating profiles and trust networks. The main idea of the proposed method is to enhance the rating profiles of the users who have low user reliability measure by adding a number of virtual ratings. To this end, the proposed user reputation model is used to predict the virtual ratings. In addition, the diversity, novelty and reliability measures of items are considered in the proposed rating profile enhancement mechanism. Therefore, the proposed method can improve the recommender systems about the cold start and data sparsity problems and also the diversity, novelty and reliability measures. Experimental results based on three real-world datasets show that the proposed method achieves higher performance than other recommendation methods.


Author(s):  
Liang Hu ◽  
Songlei Jian ◽  
Longbing Cao ◽  
Zhiping Gu ◽  
Qingkui Chen ◽  
...  

Classic recommender systems face challenges in addressing the data sparsity and cold-start problems with only modeling the user-item relation. An essential direction is to incorporate and understand the additional heterogeneous relations, e.g., user-user and item-item relations, since each user-item interaction is often influenced by other users and items, which form the user’s/item’s influential contexts. This induces important yet challenging issues, including modeling heterogeneous relations, interactions, and the strength of the influence from users/items in the influential contexts. To this end, we design Influential-Context Aggregation Units (ICAU) to aggregate the user-user/item-item relations within a given context as the influential context embeddings. Accordingly, we propose a Heterogeneous relations-Embedded Recommender System (HERS) based on ICAUs to model and interpret the underlying motivation of user-item interactions by considering user-user and item-item influences. The experiments on two real-world datasets show the highly improved recommendation quality made by HERS and its superiority in handling the cold-start problem. In addition, we demonstrate the interpretability of modeling influential contexts in explaining the recommendation results.


2021 ◽  
Vol 2132 (1) ◽  
pp. 012035
Author(s):  
Wujun Tao ◽  
Yu Ye ◽  
Bailin Feng

Abstract There is a growing body of literature that recognizes the importance of network embedding. It intends to encode the graph structure information into a low-dimensional vector for each node in the graph, which benefits the downstream tasks. Most of recent works focus on supervised learning. But they are usually not feasible in real-world datasets owing to the high cost to obtain labels. To address this issue, we design a new unsupervised attributed network embedding method, deep attributed network embedding by mutual information maximization (DMIM). Our method focuses on maximizing mutual information between the hidden representations of the global topological structure and the node attributes, which allows us to obtain the node embedding without manual labeling. To illustrate the effectiveness of our method, we carry out the node classification task using the learned node embeddings. Compared with the state-of-the-art unsupervised methods, our method achieves superior results on various datasets.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1407
Author(s):  
Peng Wang ◽  
Jing Zhou ◽  
Yuzhang Liu ◽  
Xingchen Zhou

Knowledge graph embedding aims to embed entities and relations into low-dimensional vector spaces. Most existing methods only focus on triple facts in knowledge graphs. In addition, models based on translation or distance measurement cannot fully represent complex relations. As well-constructed prior knowledge, entity types can be employed to learn the representations of entities and relations. In this paper, we propose a novel knowledge graph embedding model named TransET, which takes advantage of entity types to learn more semantic features. More specifically, circle convolution based on the embeddings of entity and entity types is utilized to map head entity and tail entity to type-specific representations, then translation-based score function is used to learn the presentation triples. We evaluated our model on real-world datasets with two benchmark tasks of link prediction and triple classification. Experimental results demonstrate that it outperforms state-of-the-art models in most cases.


Author(s):  
Shengsheng Qian ◽  
Jun Hu ◽  
Quan Fang ◽  
Changsheng Xu

In this article, we focus on fake news detection task and aim to automatically identify the fake news from vast amount of social media posts. To date, many approaches have been proposed to detect fake news, which includes traditional learning methods and deep learning-based models. However, there are three existing challenges: (i) How to represent social media posts effectively, since the post content is various and highly complicated; (ii) how to propose a data-driven method to increase the flexibility of the model to deal with the samples in different contexts and news backgrounds; and (iii) how to fully utilize the additional auxiliary information (the background knowledge and multi-modal information) of posts for better representation learning. To tackle the above challenges, we propose a novel Knowledge-aware Multi-modal Adaptive Graph Convolutional Networks (KMAGCN) to capture the semantic representations by jointly modeling the textual information, knowledge concepts, and visual information into a unified framework for fake news detection. We model posts as graphs and use a knowledge-aware multi-modal adaptive graph learning principal for the effective feature learning. Compared with existing methods, the proposed KMAGCN addresses challenges from three aspects: (1) It models posts as graphs to capture the non-consecutive and long-range semantic relations; (2) it proposes a novel adaptive graph convolutional network to handle the variability of graph data; and (3) it leverages textual information, knowledge concepts and visual information jointly for model learning. We have conducted extensive experiments on three public real-world datasets and superior results demonstrate the effectiveness of KMAGCN compared with other state-of-the-art algorithms.


2016 ◽  
Vol 43 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Mehdi Hosseinzadeh Aghdam ◽  
Morteza Analoui ◽  
Peyman Kabiri

Recommender systems have been widely used for predicting unknown ratings. Collaborative filtering as a recommendation technique uses known ratings for predicting user preferences in the item selection. However, current collaborative filtering methods cannot distinguish malicious users from unknown users. Also, they have serious drawbacks in generating ratings for cold-start users. Trust networks among recommender systems have been proved beneficial to improve the quality and number of predictions. This paper proposes an improved trust-aware recommender system that uses resistive circuits for trust inference. This method uses trust information to produce personalized recommendations. The result of evaluating the proposed method on Epinions dataset shows that this method can significantly improve the accuracy of recommender systems while not reducing the coverage of recommender systems.


Sign in / Sign up

Export Citation Format

Share Document