Knowledge-aware Multi-modal Adaptive Graph Convolutional Networks for Fake News Detection

Author(s):  
Shengsheng Qian ◽  
Jun Hu ◽  
Quan Fang ◽  
Changsheng Xu

In this article, we focus on fake news detection task and aim to automatically identify the fake news from vast amount of social media posts. To date, many approaches have been proposed to detect fake news, which includes traditional learning methods and deep learning-based models. However, there are three existing challenges: (i) How to represent social media posts effectively, since the post content is various and highly complicated; (ii) how to propose a data-driven method to increase the flexibility of the model to deal with the samples in different contexts and news backgrounds; and (iii) how to fully utilize the additional auxiliary information (the background knowledge and multi-modal information) of posts for better representation learning. To tackle the above challenges, we propose a novel Knowledge-aware Multi-modal Adaptive Graph Convolutional Networks (KMAGCN) to capture the semantic representations by jointly modeling the textual information, knowledge concepts, and visual information into a unified framework for fake news detection. We model posts as graphs and use a knowledge-aware multi-modal adaptive graph learning principal for the effective feature learning. Compared with existing methods, the proposed KMAGCN addresses challenges from three aspects: (1) It models posts as graphs to capture the non-consecutive and long-range semantic relations; (2) it proposes a novel adaptive graph convolutional network to handle the variability of graph data; and (3) it leverages textual information, knowledge concepts and visual information jointly for model learning. We have conducted extensive experiments on three public real-world datasets and superior results demonstrate the effectiveness of KMAGCN compared with other state-of-the-art algorithms.

2020 ◽  
Vol 34 (01) ◽  
pp. 27-34 ◽  
Author(s):  
Lei Chen ◽  
Le Wu ◽  
Richang Hong ◽  
Kun Zhang ◽  
Meng Wang

Graph Convolutional Networks~(GCNs) are state-of-the-art graph based representation learning models by iteratively stacking multiple layers of convolution aggregation operations and non-linear activation operations. Recently, in Collaborative Filtering~(CF) based Recommender Systems~(RS), by treating the user-item interaction behavior as a bipartite graph, some researchers model higher-layer collaborative signals with GCNs. These GCN based recommender models show superior performance compared to traditional works. However, these models suffer from training difficulty with non-linear activations for large user-item graphs. Besides, most GCN based models could not model deeper layers due to the over smoothing effect with the graph convolution operation. In this paper, we revisit GCN based CF models from two aspects. First, we empirically show that removing non-linearities would enhance recommendation performance, which is consistent with the theories in simple graph convolutional networks. Second, we propose a residual network structure that is specifically designed for CF with user-item interaction modeling, which alleviates the over smoothing problem in graph convolution aggregation operation with sparse user-item interaction data. The proposed model is a linear model and it is easy to train, scale to large datasets, and yield better efficiency and effectiveness on two real datasets. We publish the source code at https://github.com/newlei/LR-GCCF.


Author(s):  
Jing Huang ◽  
Jie Yang

Hypergraph, an expressive structure with flexibility to model the higher-order correlations among entities, has recently attracted increasing attention from various research domains. Despite the success of Graph Neural Networks (GNNs) for graph representation learning, how to adapt the powerful GNN-variants directly into hypergraphs remains a challenging problem. In this paper, we propose UniGNN, a unified framework for interpreting the message passing process in graph and hypergraph neural networks, which can generalize general GNN models into hypergraphs. In this framework, meticulously-designed architectures aiming to deepen GNNs can also be incorporated into hypergraphs with the least effort. Extensive experiments have been conducted to demonstrate the effectiveness of UniGNN on multiple real-world datasets, which outperform the state-of-the-art approaches with a large margin. Especially for the DBLP dataset, we increase the accuracy from 77.4% to 88.8% in the semi-supervised hypernode classification task. We further prove that the proposed message-passing based UniGNN models are at most as powerful as the 1-dimensional Generalized Weisfeiler-Leman (1-GWL) algorithm in terms of distinguishing non-isomorphic hypergraphs. Our code is available at https://github.com/OneForward/UniGNN.


2020 ◽  
Vol 34 (07) ◽  
pp. 12055-12062
Author(s):  
Zichang Tan ◽  
Yang Yang ◽  
Jun Wan ◽  
Guodong Guo ◽  
Stan Z. Li

In this paper, we propose a new end-to-end network, named Joint Learning of Attribute and Contextual relations (JLAC), to solve the task of pedestrian attribute recognition. It includes two novel modules: Attribute Relation Module (ARM) and Contextual Relation Module (CRM). For ARM, we construct an attribute graph with attribute-specific features which are learned by the constrained losses, and further use Graph Convolutional Network (GCN) to explore the correlations among multiple attributes. For CRM, we first propose a graph projection scheme to project the 2-D feature map into a set of nodes from different image regions, and then employ GCN to explore the contextual relations among those regions. Since the relation information in the above two modules is correlated and complementary, we incorporate them into a unified framework to learn both together. Experiments on three benchmarks, including PA-100K, RAP, PETA attribute datasets, demonstrate the effectiveness of the proposed JLAC.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Fangyuan Lei ◽  
Xun Liu ◽  
Qingyun Dai ◽  
Bingo Wing-Kuen Ling ◽  
Huimin Zhao ◽  
...  

With the higher-order neighborhood information of a graph network, the accuracy of graph representation learning classification can be significantly improved. However, the current higher-order graph convolutional networks have a large number of parameters and high computational complexity. Therefore, we propose a hybrid lower-order and higher-order graph convolutional network (HLHG) learning model, which uses a weight sharing mechanism to reduce the number of network parameters. To reduce the computational complexity, we propose a novel information fusion pooling layer to combine the high-order and low-order neighborhood matrix information. We theoretically compare the computational complexity and the number of parameters of the proposed model with those of the other state-of-the-art models. Experimentally, we verify the proposed model on large-scale text network datasets using supervised learning and on citation network datasets using semisupervised learning. The experimental results show that the proposed model achieves higher classification accuracy with a small set of trainable weight parameters.


Author(s):  
Min Shi ◽  
Yufei Tang ◽  
Xingquan Zhu ◽  
David Wilson ◽  
Jianxun Liu

Networked data often demonstrate the Pareto principle (i.e., 80/20 rule) with skewed class distributions, where most vertices belong to a few majority classes and minority classes only contain a handful of instances. When presented with imbalanced class distributions, existing graph embedding learning tends to bias to nodes from majority classes, leaving nodes from minority classes under-trained. In this paper, we propose Dual-Regularized Graph Convolutional Networks (DR-GCN) to handle multi-class imbalanced graphs, where two types of regularization are imposed to tackle class imbalanced representation learning. To ensure that all classes are equally represented, we propose a class-conditioned adversarial training process to facilitate the separation of labeled nodes. Meanwhile, to maintain training equilibrium (i.e., retaining quality of fit across all classes), we force unlabeled nodes to follow a similar latent distribution to the labeled nodes by minimizing their difference in the embedding space. Experiments on real-world imbalanced graphs demonstrate that DR-GCN outperforms the state-of-the-art methods in node classification, graph clustering, and visualization.


2019 ◽  
Vol 25 (4) ◽  
pp. 62-67 ◽  
Author(s):  
Feyza Altunbey Ozbay ◽  
Bilal Alatas

Deceptive content is becoming increasingly dangerous, such as fake news created by social media users. Individuals and society have been affected negatively by the spread of low-quality news on social media. The fake and real news needs to be detected to eliminate the disadvantages of social media. This paper proposes a novel approach for fake news detection (FND) problem on social media. Applying this approach, FND problem has been considered as an optimization problem for the first time and two metaheuristic algorithms, the Grey Wolf Optimization (GWO) and Salp Swarm Optimization (SSO) have been adapted to the FND problem for the first time as well. The proposed FND approach consists of three stages. The first stage is data preprocessing. The second stage is adapting GWO and SSO for construction of a novel FND model. The last stage consists of using proposed FND model for testing. The proposed approach has been evaluated using three different real-world datasets. The results have been compared with seven supervised artificial intelligence algorithms. The results show GWO algorithm has the best performance in comparison with SSO algorithm and the other artificial intelligence algorithms. GWO seems to be efficiently used for solving different types of social media problems.


2019 ◽  
Vol 11 (18) ◽  
pp. 2142 ◽  
Author(s):  
Lianfa Li

Semantic segmentation is a fundamental means of extracting information from remotely sensed images at the pixel level. Deep learning has enabled considerable improvements in efficiency and accuracy of semantic segmentation of general images. Typical models range from benchmarks such as fully convolutional networks, U-Net, Micro-Net, and dilated residual networks to the more recently developed DeepLab 3+. However, many of these models were originally developed for segmentation of general or medical images and videos, and are not directly relevant to remotely sensed images. The studies of deep learning for semantic segmentation of remotely sensed images are limited. This paper presents a novel flexible autoencoder-based architecture of deep learning that makes extensive use of residual learning and multiscaling for robust semantic segmentation of remotely sensed land-use images. In this architecture, a deep residual autoencoder is generalized to a fully convolutional network in which residual connections are implemented within and between all encoding and decoding layers. Compared with the concatenated shortcuts in U-Net, these residual connections reduce the number of trainable parameters and improve the learning efficiency by enabling extensive backpropagation of errors. In addition, resizing or atrous spatial pyramid pooling (ASPP) can be leveraged to capture multiscale information from the input images to enhance the robustness to scale variations. The residual learning and multiscaling strategies improve the trained model’s generalizability, as demonstrated in the semantic segmentation of land-use types in two real-world datasets of remotely sensed images. Compared with U-Net, the proposed method improves the Jaccard index (JI) or the mean intersection over union (MIoU) by 4-11% in the training phase and by 3-9% in the validation and testing phases. With its flexible deep learning architecture, the proposed approach can be easily applied for and transferred to semantic segmentation of land-use variables and other surface variables of remotely sensed images.


2021 ◽  
Vol 25 (3) ◽  
pp. 739-757
Author(s):  
Zheng Wu ◽  
Hongchang Chen ◽  
Jianpeng Zhang ◽  
Shuxin Liu ◽  
Ruiyang Huang ◽  
...  

Graph convolutional networks (GCN) have recently emerged as powerful node embedding methods in network analysis tasks. Particularly, GCNs have been successfully leveraged to tackle the challenging link prediction problem, aiming at predicting missing links that exist yet were not found. However, most of these models are oriented to undirected graphs, which are limited to certain real-life applications. Therefore, based on the social ranking theory, we extend the GCN to address the directed link prediction problem. Firstly, motivated by the reciprocated and unreciprocated nature of social ties, we separate nodes in the neighbor subgraph of the missing link into the same, a higher-ranked and a lower-ranked set. Then, based on the three kinds of node sets, we propose a method to correctly aggregate and propagate the directional information across layers of a GCN model. Empirical study on 8 real-world datasets shows that our proposed method is capable of reserving rich information related to directed link direction and consistently performs well on graphs from numerous domains.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256039
Author(s):  
Jiho Choi ◽  
Taewook Ko ◽  
Younhyuk Choi ◽  
Hyungho Byun ◽  
Chong-kwon Kim

Social media has become an ideal platform for the propagation of rumors, fake news, and misinformation. Rumors on social media not only mislead online users but also affect the real world immensely. Thus, detecting the rumors and preventing their spread became an essential task. Some of the recent deep learning-based rumor detection methods, such as Bi-Directional Graph Convolutional Networks (Bi-GCN), represent rumor using the completed stage of the rumor diffusion and try to learn the structural information from it. However, these methods are limited to represent rumor propagation as a static graph, which isn’t optimal for capturing the dynamic information of the rumors. In this study, we propose novel graph convolutional networks with attention mechanisms, named Dynamic GCN, for rumor detection. We first represent rumor posts with their responsive posts as dynamic graphs. The temporal information is used to generate a sequence of graph snapshots. The representation learning on graph snapshots with attention mechanism captures both structural and temporal information of rumor spreads. The conducted experiments on three real-world datasets demonstrate the superiority of Dynamic GCN over the state-of-the-art methods in the rumor detection task.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Si Zhang ◽  
Hanghang Tong ◽  
Jiejun Xu ◽  
Ross Maciejewski

Abstract Graphs naturally appear in numerous application domains, ranging from social analysis, bioinformatics to computer vision. The unique capability of graphs enables capturing the structural relations among data, and thus allows to harvest more insights compared to analyzing data in isolation. However, it is often very challenging to solve the learning problems on graphs, because (1) many types of data are not originally structured as graphs, such as images and text data, and (2) for graph-structured data, the underlying connectivity patterns are often complex and diverse. On the other hand, the representation learning has achieved great successes in many areas. Thereby, a potential solution is to learn the representation of graphs in a low-dimensional Euclidean space, such that the graph properties can be preserved. Although tremendous efforts have been made to address the graph representation learning problem, many of them still suffer from their shallow learning mechanisms. Deep learning models on graphs (e.g., graph neural networks) have recently emerged in machine learning and other related areas, and demonstrated the superior performance in various problems. In this survey, despite numerous types of graph neural networks, we conduct a comprehensive review specifically on the emerging field of graph convolutional networks, which is one of the most prominent graph deep learning models. First, we group the existing graph convolutional network models into two categories based on the types of convolutions and highlight some graph convolutional network models in details. Then, we categorize different graph convolutional networks according to the areas of their applications. Finally, we present several open challenges in this area and discuss potential directions for future research.


Sign in / Sign up

Export Citation Format

Share Document