scholarly journals Correct-and-Memorize: Learning to Translate from Interactive Revisions

Author(s):  
Rongxiang Weng ◽  
Hao Zhou ◽  
Shujian Huang ◽  
Lei Li ◽  
Yifan Xia ◽  
...  

State-of-the-art machine translation models are still not on a par with human translators. Previous work takes human interactions into the neural machine translation process to obtain improved results in target languages. However, not all model--translation errors are equal -- some are critical while others are minor. In the meanwhile, same translation mistakes occur repeatedly in similar context. To solve both issues, we propose CAMIT, a novel method for translating in an interactive environment. Our proposed method works with critical revision instructions, therefore allows human to correct arbitrary words in model-translated sentences. In addition, CAMIT learns from and softly memorizes revision actions based on the context, alleviating the issue of repeating mistakes. Experiments in both ideal and real interactive translation settings demonstrate that our proposed CAMIT enhances machine translation results significantly while requires fewer revision instructions from human compared to previous methods. 

Author(s):  
Rui Wang ◽  
Xu Tan ◽  
Renqian Luo ◽  
Tao Qin ◽  
Tie-Yan Liu

Neural approaches have achieved state-of-the-art accuracy on machine translation but suffer from the high cost of collecting large scale parallel data. Thus, a lot of research has been conducted for neural machine translation (NMT) with very limited parallel data, i.e., the low-resource setting. In this paper, we provide a survey for low-resource NMT and classify related works into three categories according to the auxiliary data they used: (1) exploiting monolingual data of source and/or target languages, (2) exploiting data from auxiliary languages, and (3) exploiting multi-modal data. We hope that our survey can help researchers to better understand this field and inspire them to design better algorithms, and help industry practitioners to choose appropriate algorithms for their applications.


Author(s):  
Zaixiang Zheng ◽  
Xiang Yue ◽  
Shujian Huang ◽  
Jiajun Chen ◽  
Alexandra Birch

Document-level machine translation manages to outperform sentence level models by a small margin, but have failed to be widely adopted. We argue that previous research did not make a clear use of the global context, and propose a new document-level NMT framework that deliberately models the local context of each sentence with the awareness of the global context of the document in both source and target languages. We specifically design the model to be able to deal with documents containing any number of sentences, including single sentences. This unified approach allows our model to be trained elegantly on standard datasets without needing to train on sentence and document level data separately. Experimental results demonstrate that our model outperforms Transformer baselines and previous document-level NMT models with substantial margins of up to 2.1 BLEU on state-of-the-art baselines. We also provide analyses which show the benefit of context far beyond the neighboring two or three sentences, which previous studies have typically incorporated.


Author(s):  
Jinwei Qi ◽  
Yuxin Peng

The inconsistent distribution and representation of image and text make it quite challenging to measure their similarity, and construct correlation between them. Inspired by neural machine translation to establish a corresponding relationship between two entirely different languages, we attempt to treat images as a special kind of language to provide visual descriptions, so that translation can be conduct between bilingual pair of image and text to effectively explore cross-modal correlation. Thus, we propose Cross-modal Bidirectional Translation (CBT) approach, and further explore the utilization of reinforcement learning to improve the translation process. First, a cross-modal translation mechanism is proposed, where image and text are treated as bilingual pairs, and cross-modal correlation can be effectively captured in both feature spaces of image and text by bidirectional translation training. Second, cross-modal reinforcement learning is proposed to perform a bidirectional game between image and text, which is played as a round to promote the bidirectional translation process. Besides, both inter-modality and intra-modality reward signals can be extracted to provide complementary clues for boosting cross-modal correlation learning. Experiments are conducted to verify the performance of our proposed approach on cross-modal retrieval, compared with 11 state-of-the-art methods on 3 datasets.


Author(s):  
Yong Cheng ◽  
Qian Yang ◽  
Yang Liu ◽  
Maosong Sun ◽  
Wei Xu

While recent neural machine translation approaches have delivered state-of-the-art performance for resource-rich language pairs, they suffer from the data scarcity problem for resource-scarce language pairs. Although this problem can be alleviated by exploiting a pivot language to bridge the source and target languages, the source-to-pivot and pivot-to-target translation models are usually independently trained. In this work, we introduce a joint training algorithm for pivot-based neural machine translation. We propose three methods to connect the two models and enable them to interact with each other during training. Experiments on Europarl and WMT corpora show that joint training of source-to-pivot and pivot-to-target models leads to significant improvements over independent training across various languages.


Author(s):  
Rashmini Naranpanawa ◽  
Ravinga Perera ◽  
Thilakshi Fonseka ◽  
Uthayasanker Thayasivam

Neural machine translation (NMT) is a remarkable approach which performs much better than the Statistical machine translation (SMT) models when there is an abundance of parallel corpus. However, vanilla NMT is primarily based upon word-level with a fixed vocabulary. Therefore, low resource morphologically rich languages such as Sinhala are mostly affected by the out of vocabulary (OOV) and Rare word problems. Recent advancements in subword techniques have opened up opportunities for low resource communities by enabling open vocabulary translation. In this paper, we extend our recently published state-of-the-art EN-SI translation system using the transformer and explore standard subword techniques on top of it to identify which subword approach has a greater effect on English Sinhala language pair. Our models demonstrate that subword segmentation strategies along with the state-of-the-art NMT can perform remarkably when translating English sentences into a rich morphology language regardless of a large parallel corpus.


Author(s):  
Yingce Xia ◽  
Tianyu He ◽  
Xu Tan ◽  
Fei Tian ◽  
Di He ◽  
...  

Sharing source and target side vocabularies and word embeddings has been a popular practice in neural machine translation (briefly, NMT) for similar languages (e.g., English to French or German translation). The success of such wordlevel sharing motivates us to move one step further: we consider model-level sharing and tie the whole parts of the encoder and decoder of an NMT model. We share the encoder and decoder of Transformer (Vaswani et al. 2017), the state-of-the-art NMT model, and obtain a compact model named Tied Transformer. Experimental results demonstrate that such a simple method works well for both similar and dissimilar language pairs. We empirically verify our framework for both supervised NMT and unsupervised NMT: we achieve a 35.52 BLEU score on IWSLT 2014 German to English translation, 28.98/29.89 BLEU scores on WMT 2014 English to German translation without/with monolingual data, and a 22.05 BLEU score on WMT 2016 unsupervised German to English translation.


2020 ◽  
Vol 34 (2-3) ◽  
pp. 149-195
Author(s):  
Rejwanul Haque ◽  
Mohammed Hasanuzzaman ◽  
Andy Way

Author(s):  
Mehreen Alam ◽  
Sibt ul Hussain

Attention-based encoder-decoder models have superseded conventional techniques due to their unmatched performance on many neural machine translation problems. Usually, the encoders and decoders are two recurrent neural networks where the decoder is directed to focus on relevant parts of the source language using attention mechanism. This data-driven approach leads to generic and scalable solutions with no reliance on manual hand-crafted features. To the best of our knowledge, none of the modern machine translation approaches has been applied to address the research problem of Urdu machine transliteration. Ours is the first attempt to apply the deep neural network-based encoder-decoder using attention mechanism to address the aforementioned problem using Roman-Urdu and Urdu parallel corpus. To this end, we present (i) the first ever Roman-Urdu to Urdu parallel corpus of 1.1 million sentences, (ii) three state of the art encoder-decoder models, and (iii) a detailed empirical analysis of these three models on the Roman-Urdu to Urdu parallel corpus. Overall, attention-based model gives state-of-the-art performance with the benchmark of 70 BLEU score. Our qualitative experimental evaluation shows that our models generate coherent transliterations which are grammatically and logically correct.


Author(s):  
Shuo Ren ◽  
Zhirui Zhang ◽  
Shujie Liu ◽  
Ming Zhou ◽  
Shuai Ma

Without real bilingual corpus available, unsupervised Neural Machine Translation (NMT) typically requires pseudo parallel data generated with the back-translation method for the model training. However, due to weak supervision, the pseudo data inevitably contain noises and errors that will be accumulated and reinforced in the subsequent training process, leading to bad translation performance. To address this issue, we introduce phrase based Statistic Machine Translation (SMT) models which are robust to noisy data, as posterior regularizations to guide the training of unsupervised NMT models in the iterative back-translation process. Our method starts from SMT models built with pre-trained language models and word-level translation tables inferred from cross-lingual embeddings. Then SMT and NMT models are optimized jointly and boost each other incrementally in a unified EM framework. In this way, (1) the negative effect caused by errors in the iterative back-translation process can be alleviated timely by SMT filtering noises from its phrase tables; meanwhile, (2) NMT can compensate for the deficiency of fluency inherent in SMT. Experiments conducted on en-fr and en-de translation tasks show that our method outperforms the strong baseline and achieves new state-of-the-art unsupervised machine translation performance.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1213
Author(s):  
Guanghao Xu ◽  
Youngjoong Ko ◽  
Jungyun Seo

Synthetic data has been shown to be effective in training state-of-the-art neural machine translation (NMT) systems. Because the synthetic data is often generated by back-translating monolingual data from the target language into the source language, it potentially contains a lot of noise—weakly paired sentences or translation errors. In this paper, we propose a novel approach to filter this noise from synthetic data. For each sentence pair of the synthetic data, we compute a semantic similarity score using bilingual word embeddings. By selecting sentence pairs according to these scores, we obtain better synthetic parallel data. Experimental results on the IWSLT 2017 Korean→English translation task show that despite using much less data, our method outperforms the baseline NMT system with back-translation by up to 0.72 and 0.62 Bleu points for tst2016 and tst2017, respectively.


Sign in / Sign up

Export Citation Format

Share Document