scholarly journals The Surprising Power of Graph Neural Networks with Random Node Initialization

Author(s):  
Ralph Abboud ◽  
İsmail İlkan Ceylan ◽  
Martin Grohe ◽  
Thomas Lukasiewicz

Graph neural networks (GNNs) are effective models for representation learning on relational data. However, standard GNNs are limited in their expressive power, as they cannot distinguish graphs beyond the capability of the Weisfeiler-Leman graph isomorphism heuristic. In order to break this expressiveness barrier, GNNs have been enhanced with random node initialization (RNI), where the idea is to train and run the models with randomized initial node features. In this work, we analyze the expressive power of GNNs with RNI, and prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties. This universality result holds even with partially randomized initial node features, and preserves the invariance properties of GNNs in expectation. We then empirically analyze the effect of RNI on GNNs, based on carefully constructed datasets. Our empirical findings support the superior performance of GNNs with RNI over standard GNNs.

Author(s):  
Pengyong Li ◽  
Jun Wang ◽  
Ziliang Li ◽  
Yixuan Qiao ◽  
Xianggen Liu ◽  
...  

Self-supervised learning has gradually emerged as a powerful technique for graph representation learning. However, transferable, generalizable, and robust representation learning on graph data still remains a challenge for pre-training graph neural networks. In this paper, we propose a simple and effective self-supervised pre-training strategy, named Pairwise Half-graph Discrimination (PHD), that explicitly pre-trains a graph neural network at graph-level. PHD is designed as a simple binary classification task to discriminate whether two half-graphs come from the same source. Experiments demonstrate that the PHD is an effective pre-training strategy that offers comparable or superior performance on 13 graph classification tasks compared with state-of-the-art strategies, and achieves notable improvements when combined with node-level strategies. Moreover, the visualization of learned representation revealed that PHD strategy indeed empowers the model to learn graph-level knowledge like the molecular scaffold. These results have established PHD as a powerful and effective self-supervised learning strategy in graph-level representation learning.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Si Zhang ◽  
Hanghang Tong ◽  
Jiejun Xu ◽  
Ross Maciejewski

Abstract Graphs naturally appear in numerous application domains, ranging from social analysis, bioinformatics to computer vision. The unique capability of graphs enables capturing the structural relations among data, and thus allows to harvest more insights compared to analyzing data in isolation. However, it is often very challenging to solve the learning problems on graphs, because (1) many types of data are not originally structured as graphs, such as images and text data, and (2) for graph-structured data, the underlying connectivity patterns are often complex and diverse. On the other hand, the representation learning has achieved great successes in many areas. Thereby, a potential solution is to learn the representation of graphs in a low-dimensional Euclidean space, such that the graph properties can be preserved. Although tremendous efforts have been made to address the graph representation learning problem, many of them still suffer from their shallow learning mechanisms. Deep learning models on graphs (e.g., graph neural networks) have recently emerged in machine learning and other related areas, and demonstrated the superior performance in various problems. In this survey, despite numerous types of graph neural networks, we conduct a comprehensive review specifically on the emerging field of graph convolutional networks, which is one of the most prominent graph deep learning models. First, we group the existing graph convolutional network models into two categories based on the types of convolutions and highlight some graph convolutional network models in details. Then, we categorize different graph convolutional networks according to the areas of their applications. Finally, we present several open challenges in this area and discuss potential directions for future research.


2021 ◽  
Author(s):  
Ying Xia ◽  
Chun-Qiu Xia ◽  
Xiaoyong Pan ◽  
Hong-Bin Shen

Abstract Knowledge of the interactions between proteins and nucleic acids is the basis of understanding various biological activities and designing new drugs. How to accurately identify the nucleic-acid-binding residues remains a challenging task. In this paper, we propose an accurate predictor, GraphBind, for identifying nucleic-acid-binding residues on proteins based on an end-to-end graph neural network. Considering that binding sites often behave in highly conservative patterns on local tertiary structures, we first construct graphs based on the structural contexts of target residues and their spatial neighborhood. Then, hierarchical graph neural networks (HGNNs) are used to embed the latent local patterns of structural and bio-physicochemical characteristics for binding residue recognition. We comprehensively evaluate GraphBind on DNA/RNA benchmark datasets. The results demonstrate the superior performance of GraphBind than state-of-the-art methods. Moreover, GraphBind is extended to other ligand-binding residue prediction to verify its generalization capability. Web server of GraphBind is freely available at http://www.csbio.sjtu.edu.cn/bioinf/GraphBind/.


Author(s):  
George Dasoulas ◽  
Ludovic Dos Santos ◽  
Kevin Scaman ◽  
Aladin Virmaux

In this paper, we show that a simple coloring scheme can improve, both theoretically and empirically, the expressive power of Message Passing Neural Networks (MPNNs). More specifically, we introduce a graph neural network called Colored Local Iterative Procedure (CLIP) that uses colors to disambiguate identical node attributes, and show that this representation is a universal approximator of continuous functions on graphs with node attributes. Our method relies on separability, a key topological characteristic that allows to extend well-chosen neural networks into universal representations. Finally, we show experimentally that CLIP is capable of capturing structural characteristics that traditional MPNNs fail to distinguish, while being state-of-the-art on benchmark graph classification datasets.


Author(s):  
Christopher Morris ◽  
Martin Ritzert ◽  
Matthias Fey ◽  
William L. Hamilton ◽  
Jan Eric Lenssen ◽  
...  

In recent years, graph neural networks (GNNs) have emerged as a powerful neural architecture to learn vector representations of nodes and graphs in a supervised, end-to-end fashion. Up to now, GNNs have only been evaluated empirically—showing promising results. The following work investigates GNNs from a theoretical point of view and relates them to the 1-dimensional Weisfeiler-Leman graph isomorphism heuristic (1-WL). We show that GNNs have the same expressiveness as the 1-WL in terms of distinguishing non-isomorphic (sub-)graphs. Hence, both algorithms also have the same shortcomings. Based on this, we propose a generalization of GNNs, so-called k-dimensional GNNs (k-GNNs), which can take higher-order graph structures at multiple scales into account. These higher-order structures play an essential role in the characterization of social networks and molecule graphs. Our experimental evaluation confirms our theoretical findings as well as confirms that higher-order information is useful in the task of graph classification and regression.


Author(s):  
Yuxiao Dong ◽  
Ziniu Hu ◽  
Kuansan Wang ◽  
Yizhou Sun ◽  
Jie Tang

Representation learning has offered a revolutionary learning paradigm for various AI domains. In this survey, we examine and review the problem of representation learning with the focus on heterogeneous networks, which consists of different types of vertices and relations. The goal of this problem is to automatically project objects, most commonly, vertices, in an input heterogeneous network into a latent embedding space such that both the structural and relational properties of the network can be encoded and preserved. The embeddings (representations) can be then used as the features to machine learning algorithms for addressing corresponding network tasks. To learn expressive embeddings, current research developments can fall into two major categories: shallow embedding learning and graph neural networks. After a thorough review of the existing literature, we identify several critical challenges that remain unaddressed and discuss future directions. Finally, we build the Heterogeneous Graph Benchmark to facilitate open research for this rapidly-developing topic.


Author(s):  
Jing Huang ◽  
Jie Yang

Hypergraph, an expressive structure with flexibility to model the higher-order correlations among entities, has recently attracted increasing attention from various research domains. Despite the success of Graph Neural Networks (GNNs) for graph representation learning, how to adapt the powerful GNN-variants directly into hypergraphs remains a challenging problem. In this paper, we propose UniGNN, a unified framework for interpreting the message passing process in graph and hypergraph neural networks, which can generalize general GNN models into hypergraphs. In this framework, meticulously-designed architectures aiming to deepen GNNs can also be incorporated into hypergraphs with the least effort. Extensive experiments have been conducted to demonstrate the effectiveness of UniGNN on multiple real-world datasets, which outperform the state-of-the-art approaches with a large margin. Especially for the DBLP dataset, we increase the accuracy from 77.4% to 88.8% in the semi-supervised hypernode classification task. We further prove that the proposed message-passing based UniGNN models are at most as powerful as the 1-dimensional Generalized Weisfeiler-Leman (1-GWL) algorithm in terms of distinguishing non-isomorphic hypergraphs. Our code is available at https://github.com/OneForward/UniGNN.


Author(s):  
Jinlong Du ◽  
Senzhang Wang ◽  
Hao Miao ◽  
Jiaqiang Zhang

Graph pooling is a critical operation to downsample a graph in graph neural networks. Existing coarsening pooling methods (e.g. DiffPool) mostly focus on capturing the global topology structure by assigning the nodes into several coarse clusters, while dropping pooling methods (e.g. SAGPool) try to preserve the local topology structure by selecting the top-k representative nodes. However, there lacks an effective method to integrate the two types of methods so that both the local and the global topology structure of a graph can be well captured. To address this issue, we propose a Multi-channel Graph Pooling method named MuchPool, which captures the local structure, the global structure, and node feature simultaneously in graph pooling. Specifically, we use two channels to conduct dropping pooling based on the local topology and node features respectively, and one channel to conduct coarsening pooling. Then a cross-channel convolution operation is designed to refine the graph representations of different channels. Finally, the pooling results are aggregated as the final pooled graph. Extensive experiments on six benchmark datasets present the superior performance of MuchPool. The code of this work is publicly available at Github.


2020 ◽  
Vol 34 (04) ◽  
pp. 7007-7014
Author(s):  
Shichao Zhu ◽  
Lewei Zhou ◽  
Shirui Pan ◽  
Chuan Zhou ◽  
Guiying Yan ◽  
...  

Graph Neural Networks (GNNs) have achieved state-of-the-art performance in many graph data analysis tasks. However, they still suffer from two limitations for graph representation learning. First, they exploit non-smoothing node features which may result in suboptimal embedding and degenerated performance for graph classification. Second, they only exploit neighbor information but ignore global topological knowledge. Aiming to overcome these limitations simultaneously, in this paper, we propose a novel, flexible, and end-to-end framework, Graph Smoothing Splines Neural Networks (GSSNN), for graph classification. By exploiting the smoothing splines, which are widely used to learn smoothing fitting function in regression, we develop an effective feature smoothing and enhancement module Scaled Smoothing Splines (S3) to learn graph embedding. To integrate global topological information, we design a novel scoring module, which exploits closeness, degree, as well as self-attention values, to select important node features as knots for smoothing splines. These knots can be potentially used for interpreting classification results. In extensive experiments on biological and social datasets, we demonstrate that our model achieves state-of-the-arts and GSSNN is superior in learning more robust graph representations. Furthermore, we show that S3 module is easily plugged into existing GNNs to improve their performance.


Sign in / Sign up

Export Citation Format

Share Document