scholarly journals Relationship between Skin Microbiota and Skin Biophysical Parameters in Inflammatory Skin Disease: A Systematic Review

2021 ◽  
Vol 7 (1) ◽  
pp. 1-6
Author(s):  
Paola Perugini ◽  

Many recent studies highlight the importance of skin microbiota for skin health. Alterations in the balance of bacterial flora cause the development of inflammatory skin diseases such as acne, atopic dermatitis, or psoriasis. This systematic review aims to investigate the relationship, in these skin diseases, between skin microbiota and skin biophysical parameters, such as pH, Transepidermal Water Loss (TEWL), Hydration (HI) and sebum levels. Google Scholar, Medline via Pubmed, and Web of Science were considered as scientific database to search studies about this topic. Research about acne and psoriasis did not produce any results. For this reason, in this review, only articles concerning atopic dermatitis were discussed. Therefore, a possible correlation between skin barrier functionality and microbial composition was also investigated. So, this could be a starting point for the diagnosis of atopic dermatitis or, more generally, for all inflammatory skin diseases.

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261259
Author(s):  
Xiaofang Liu ◽  
Guang Yang ◽  
Mengxin Luo ◽  
Qi Lan ◽  
Xiaoxia Shi ◽  
...  

Background Vitamin E has long been linked to skin health, including all of its possible functions in cosmetic products, to its roles in membrane integrity and even the aging process. However, reports on the relationship between serum vitamin E levels and the risk of chronic inflammatory skin diseases have been inconsistent. We performed a systematic review and meta-analysis to evaluate the association between serum vitamin E levels and chronic inflammatory skin diseases. Methods We searched the PubMed, Web of Science and Scopus databases, with no time limit up to 30.06.2021. Studies examining serum vitamin E levels in patients with chronic inflammatory skin diseases were selected. Results Twenty articles met the inclusion criteria. Compared with controls, a lower vitamin E level was found in patients with vitiligo (SMD: -0.70, 95% CI: -1.21 to -0.19), psoriasis (SMD: -2.73, 95% CI: -3.57 to -1.18), atopic dermatitis (SMD: -1.08, 95% CI: -1.80 to -0.36) and acne (SMD: -0.67, 95% CI: -1.05 to -0.30). Conclusions Our meta-analysis showed that serum vitamin E levels were lower in patients suffering from vitiligo, psoriasis, atopic dermatitis and acne. This study highlights the need to evaluate vitamin E status to improve its level in patients with skin diseases.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 962
Author(s):  
Iva Ferček ◽  
Liborija Lugović-Mihić ◽  
Arjana Tambić-Andrašević ◽  
Diana Ćesić ◽  
Ana Gverić Grginić ◽  
...  

Many relatively common chronic inflammatory skin diseases manifest on the face (seborrheic dermatitis, rosacea, acne, perioral/periorificial dermatitis, periocular dermatitis, etc.), thereby significantly impairing patient appearance and quality of life. Given the yet unexplained pathogenesis and numerous factors involved, these diseases often present therapeutic challenges. The term “microbiome” comprises the totality of microorganisms (microbiota), their genomes, and environmental factors in a particular environment. Changes in human skin microbiota composition and/or functionality are believed to trigger immune dysregulation, and consequently an inflammatory response, thereby playing a potentially significant role in the clinical manifestations and treatment of these diseases. Although cultivation methods have traditionally been used in studies of bacterial microbiome species, a large number of bacterial strains cannot be grown in the laboratory. Since standard culture-dependent methods detect fewer than 1% of all bacterial species, a metagenomic approach could be used to detect bacteria that cannot be cultivated. The skin microbiome exhibits spatial distribution associated with the microenvironment (sebaceous, moist, and dry areas). However, although disturbance of the skin microbiome can lead to a number of pathological conditions and diseases, it is still not clear whether skin diseases result from change in the microbiome or cause such a change. Thus far, the skin microbiome has been studied in atopic dermatitis, seborrheic dermatitis, psoriasis, acne, and rosacea. Studies on the possible association between changes in the microbiome and their association with skin diseases have improved the understanding of disease development, diagnostics, and therapeutics. The identification of the bacterial markers associated with particular inflammatory skin diseases would significantly accelerate the diagnostics and reduce treatment costs. Microbiota research and determination could facilitate the identification of potential causes of skin diseases that cannot be detected by simpler methods, thereby contributing to the design and development of more effective therapies.


2019 ◽  
Vol 21 (1) ◽  
pp. 21-39 ◽  
Author(s):  
Simran Dhaliwal ◽  
Mimi Nguyen ◽  
Alexandra R. Vaughn ◽  
Manisha Notay ◽  
Cindy J. Chambers ◽  
...  

2019 ◽  
Vol 11 (522) ◽  
pp. eaax2693 ◽  
Author(s):  
Jörg Klufa ◽  
Thomas Bauer ◽  
Buck Hanson ◽  
Craig Herbold ◽  
Philipp Starkl ◽  
...  

Epidermal growth factor receptor (EGFR)–targeted anticancer therapy induces stigmatizing skin toxicities affecting patients’ quality of life and therapy adherence. The lack of mechanistic details underlying these adverse events hampers their management. We found that EGFR/ERK signaling is required in LRIG1-positive stem cells during de novo hair eruption to secure barrier integrity and prevent the invasion of commensal microbiota and inflammatory skin disease. EGFR-deficient epidermis is permissive for microbiota outgrowth and displays an atopic-like TH2-dominated signature. The opening of the follicular ostia during hair eruption allows invasion of commensal microbiota into the hair follicle, initiating an additional TH1 and TH17 response culminating in chronic folliculitis. Restoration of epidermal ERK signaling via prophylactic FGF7 treatment or transgenic SOS expression rescues the barrier defect in the absence of EGFR, highlighting a therapeutic anchor point. These data reveal that commensal skin microbiota provoke atopic-like inflammatory skin diseases by invading into the follicular opening of erupting hair.


2021 ◽  
Vol 22 (15) ◽  
pp. 8237
Author(s):  
Chung-Chi Yang ◽  
Yen-Ling Hung ◽  
Wen-Chin Ko ◽  
Yi-Ju Tsai ◽  
Jia-Feng Chang ◽  
...  

Atopic dermatitis (AD) is a chronic and persistent inflammatory skin disease characterized by eczematous lesions and itching, and it has become a serious health problem. However, the common clinical treatments provide limited relief and are accompanied by adverse effects. Therefore, there is a need to develop novel and effective therapies to treat AD. Neferine is a small molecule compound isolated from the green embryo of the mature seeds of lotus (Nelumbo nucifera). It has a bisbenzylisoquinoline alkaloid structure. Relevant studies have shown that neferine has many pharmacological and biological activities, including anti-inflammatory, anti-thrombotic, and anti-diabetic activities. However, there are very few studies on neferine in the skin, especially the related effects on inflammatory skin diseases. In this study, we proved that it has the potential to be used in the treatment of atopic dermatitis. Through in vitro studies, we found that neferine inhibited the expression of cytokines and chemokines in TNF-α/IFN-γ-stimulated human keratinocyte (HaCaT) cells, and it reduced the phosphorylation of MAPK and the NF-κB signaling pathway. Through in vivo experiments, we used 2,4-dinitrochlorobenzene (DNCB) to induce atopic dermatitis-like skin inflammation in a mouse model. Our results show that neferine significantly decreased the skin barrier damage, scratching responses, and epidermal hyperplasia induced by DNCB. It significantly decreased transepidermal water loss (TEWL), erythema, blood flow, and ear thickness and increased surface skin hydration. Moreover, it also inhibited the expression of cytokines and the activation of signaling pathways. These results indicate that neferine has good potential as an alternative medicine for the treatment of atopic dermatitis or other skin-related inflammatory diseases.


2020 ◽  
Author(s):  
Liviu Ionut Moldovan ◽  
Lam Alex Tsoi ◽  
Stephen Weidinger ◽  
Johann Gudjonsson ◽  
Jørgen Kjems ◽  
...  

AbstractBackgroundAtopic dermatitis (AD) and psoriasis, two chronic inflammatory skin diseases, affect a large number of individuals worldwide, and are associated with various comorbidities. Circular RNA (circRNA) constitute a major class of non-coding RNAs that have been implicated in many human diseases, although their potential involvement in inflammatory skin diseases remains elusive.ObjectivesTo compare and contrast the circRNA expression landscapes in paired lesional and non-lesional skin from psoriasis and AD patients relative to skin from unaffected individuals. Moreover, to correlate circRNA expression to disease severity.MethodsWe analyzed high-depth RNA-seq data from paired lesional and non-lesional skin samples from 27 AD patients, 28 psoriasis patients, and 38 healthy controls. CircRNAs and their cognate linear transcripts were quantified using the circRNA detection algorithm, CIRI2.ResultsWe identified 39,286 unique circRNAs in total and found that psoriasis and AD lesional skin could be distinguished from non-lesional and healthy skin based on circRNA expression landscapes. In general, circRNAs were less abundant in lesional relative to non-lesional and healthy skin. Differential expression analyses revealed many significantly downregulated circRNAs, mainly in psoriasis lesional skin, and a strong correlation between psoriasis and AD-related circRNA expression changes was observed. A subset of circRNAs, including ciRS-7, was specifically dysregulated in psoriasis and show promise as biomarkers for discriminating AD from psoriasis.ConclusionPsoriasis and circRNA transcriptomes share expression features, including a global downregulation, but only psoriasis is characterized by several circRNAs being dysregulated independently of their cognate linear transcripts.


Sign in / Sign up

Export Citation Format

Share Document