Effect of maternal exposure of silver nanoparticles on the histogenesis of cerebellum in post-implantation of albino rats embryos

2018 ◽  
Vol 59 (1B) ◽  
2018 ◽  
Vol 66 ◽  
pp. 66-77 ◽  
Author(s):  
Shayan Amiri ◽  
Aliakbar Yousefi-Ahmadipour ◽  
Mir-Jamal Hosseini ◽  
Arya Haj-Mirzaian ◽  
Majid Momeny ◽  
...  

2020 ◽  
Vol 36 (6) ◽  
pp. 446-453
Author(s):  
Salma Awad Taghyan ◽  
Hend El Messiry ◽  
Medhat Ahmed El Zainy

This study aimed to evaluate the toxic effect of silver nanoparticles (AgNPs) on the parotid glands (PGs) of albino rats histologically and ultrastructurally and assess the possible protective effect of ascorbic acid as an antioxidant. Thirty male albino rats weighing between 150 mg and 200 mg were divided into three groups: the control group (C1) contained 10 rats that received 2 mg/kg (body weight (bw)) of aqueous nitrate buffer by intraperitoneal (IP) injection daily for 28 days; the AgNPs group contained 10 rats that received 2 mg/kg (bw) IP AgNPs daily for 28 days; and the AgNPs-vitamin C group contained 10 albino rats that received 2 mg/kg (bw) AgNPs IP daily for 28 days with oral administration of 100 mg/kg (bw) vitamin C in drinking water daily for 28 days. The PG acinar and ductal cells of the AgNPs group showed signs of toxicity and degeneration characterized as pleomorphic nuclei, binucleation, cytoplasmic vacuolations, and stagnated secretion in the ductal lumen. In addition to degenerated mitochondria, dilated rough endoplasmic reticulum and lysosomes were filled with AgNPs ( p < 0.001). The AgNPs-vitamin C group showed significantly less degenerative changes histologically and ultrastructurally compared to the AgNPs group ( p = 0.002). AgNPs produced significant toxic effects on the PG of albino rats, presumably through the generation of reactive oxygen species and toxic ion release, and administration of vitamin C was shown effective in decreasing these toxic effects.


Author(s):  
MARWA T. HASSEN ◽  
NAJAT JABBAR AHMED ◽  
HANAA K. MOHAMED

Objective: Hepatic cancer is known as primary liver cancer and hepatocellular carcinoma (HCC). Newly silver nanoparticles gained importance due to its advantages and multiple potential such as molecular imaging agent, antimicrobial, wound healing, anti-inflammatory and anticancer activity. The current study deals to assess therapeutic property silver nanoparticles (AgNPs) against diethylnitrosamine (DENA), and carbon tetrachloride (CCL4) induced hepatic cancer. Methods: Thirty male albino rats (200-250g) were distributed into four groups and hepatic cancer was induced with a single intraperitoneal dose of 200 mg/kg body weight of DENA. Two weeks later, animals received subcutaneous injections of CCl4 once a week in a dose of 3 ml/kg body weight for 6weeks. Serum biomarkers, antioxidants enzymes, inflammatory markers were evaluated to find the anti-proliferative potential of silver nanoparticles. Histological evaluation and microscopic reports were also done to document the results of the current work. Results: AgNPs significantly recover the serum marker enzymes of hepatic parameter AST, ALT, ALP, and total bilirubin and also decreased the levels of NO, IL-6 and TNF-α. Histopathological features also exhibited recovery of a hepatic architecture in cancer-induced rats. Moreover, the immunohistochemical investigation demonstrated that the levels of PCNA, and Caspase-3, which are hepatocarcinogenic markers, were significantly improved by AgNPs. Conclusion: These results concluded that AgNPs showed promising curing effects on hepatocellular ailments.


2020 ◽  
Vol 393 (5) ◽  
pp. 867-878 ◽  
Author(s):  
Parastoo Pourali ◽  
Mahnaz Nouri ◽  
Faezeh Ameri ◽  
Tana Heidari ◽  
Niloufar Kheirkhahan ◽  
...  

2019 ◽  
Vol 112 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Maryam Mozafari ◽  
Arezoo Khoradmehr ◽  
Amirhossein Danafar ◽  
Mohsen Miresmaeili ◽  
Seyed Mehdi Kalantar

2019 ◽  
Vol 38 (8) ◽  
pp. 962-973 ◽  
Author(s):  
JS Hussein ◽  
W Rasheed ◽  
T Ramzy ◽  
M Nabeeh ◽  
M Harvy ◽  
...  

Objective: To investigate the ability of docosahexaenoic acid (DHA)-loaded silver nanoparticles (AgNPs) in facilitating the incorporation of DHA in the cell membrane, improve cell membrane structure, and attenuate endothelial dysfunction in experimental diabetes. Methods: DHA/AgNPs were prepared using a nanoprecipitation technique. Fifty male albino rats were used in this study; 10 of them were served as the control group and 40, as the experimental groups, were injected with streptozotocin. Then, the experimental groups were subdivided into diabetic, diabetic treated with DHA, diabetic treated with AgNPs, and diabetic treated with DHA/AgNPs groups. Results: DHA/AgNPs have small spherical size as proved from ultraviolet–visible spectroscopy, transmission electron microscope, dynamic light scattering, and scanning electron microscope techniques. Cell membrane cholesterol and triglycerides showed a significant elevation in the diabetic group compared to the control, but treatment with DHA and DHA/AgNPs caused a significant reduction in both. Treatment with AgNPs and DHA/AgNPs caused a significant improvement in asymmetric dimethylarginine and nitric oxide levels compared to the diabetic group. Cell membrane fatty acids showed that omega-6 polyunsaturated fatty acids (PUFAs) were significantly elevated, while omega-3 PUFA were significantly reduced in the diabetic group compared to the control. There is a significant improvement in the levels of fatty acids in all groups after treatment with DHA, silver, or DHA/AgNPs. Conclusion: DHA/AgNPs are potent agents for the improvement of diabetic complication and endothelial dysfunction in experimental diabetes.


2020 ◽  
Vol 38 (1B) ◽  
pp. 1-5
Author(s):  
Ruqayah A. Salman ◽  
Abdulrahman K. Ali ◽  
Amenah Ali Salman

The study aims to investigate the effects of silver nanoparticles (Ag NPs) on the seminiferous tubules in Albino rats. Several in vitro studies have been performed in different cell models, using various nanoparticles. Pure and spherical AgNPs with an average size of 30 nm, was injected into two groups of male albino rats (6 rats for each group) in different doses. Histopathological changes in testis tissues were showed a harmful effect of the silver nanoparticles, manifested by reducing the number of spermatogenic cells, and a decrease in the number of leyidg´s cells (group 1), and hypotrophy in seminiferous and enlargement in interstitial spaces in group 2.


2017 ◽  
Vol 0 (0) ◽  
pp. 479-494 ◽  
Author(s):  
Neveen Abd El Raouf ◽  
Walaa Hozyen ◽  
Marwa Abd El Neem ◽  
Ibraheem Ibraheem

Sign in / Sign up

Export Citation Format

Share Document