scholarly journals Nonclassical Symmetry of Differential Equations

2020 ◽  
pp. 183-189
Author(s):  
T. Jassim Aldhlki

In this paper, we discuss the difference between classical and nonclassical symmetries. In addition, we found the non-classical symmetry of the Benjamin Bona Mahony Equation (BBM). Finally, we found a new exact solution to a Benjamin Bona Mahony Equation (BBM) using nonclassical symmetry.

Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 378 ◽  
Author(s):  
Temuer Chaolu ◽  
Sudao Bilige

In this paper, we present an application of Wu’s method (differential characteristic set (dchar-set) algorithm) for computing the symmetry of (partial) differential equations (PDEs) that provides a direct and systematic procedure to obtain the classical and nonclassical symmetry of the differential equations. The fundamental theory and subalgorithms used in the proposed algorithm consist of a different version of the Lie criterion for the classical symmetry of PDEs and the zero decomposition algorithm of a differential polynomial (d-pol) system (DPS). The version of the Lie criterion yields determining equations (DTEs) of symmetries of differential equations, even those including a nonsolvable equation. The decomposition algorithm is used to solve the DTEs by decomposing the zero set of the DPS associated with the DTEs into a union of a series of zero sets of dchar-sets of the system, which leads to simplification of the computations.


2015 ◽  
Vol 70 (12) ◽  
pp. 1031-1037
Author(s):  
Imran Naeem ◽  
Rehana Naz ◽  
Muhammad Danish Khan

AbstractThis article analyses the nonclassical symmetries and group invariant solution of boundary layer equations for two-dimensional heated flows. First, we derive the nonclassical symmetry determining equations with the aid of the computer package SADE. We solve these equations directly to obtain nonclassical symmetries. We follow standard procedure of computing nonclassical symmetries and consider two different scenarios, ξ1≠0 and ξ1=0, ξ2≠0. Several nonclassical symmetries are reported for both scenarios. Furthermore, numerous group invariant solutions for nonclassical symmetries are derived. The similarity variables associated with each nonclassical symmetry are computed. The similarity variables reduce the system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs) in terms of similarity variables. The reduced system of ODEs are solved to obtain group invariant solution for governing boundary layer equations for two-dimensional heated flow problems. We successfully formulate a physical problem of heat transfer analysis for fluid flow over a linearly stretching porous plat and, with suitable boundary conditions, we solve this problem.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 524
Author(s):  
Chaolu Temuer ◽  
Laga Tong ◽  
George Bluman

Essential connections between the classical symmetry and nonclassical symmetry of a partial differential equations (PDEs) are established. Through these connections, the sufficient conditions for the nonclassical symmetry of PDEs can be derived directly from the inconsistent conditions of the system determining equations of the classical symmetry of the PDE. Based on the connections, a new algorithm for determining the nonclassical symmetry of a PDEs is proposed. The algorithm make the determination of the nonclassical symmetry easier by adding compatibility extra equations obtained from system of determining equations of the classical symmetry to the system of determining equations of the nonclassical symmetry of the PDE. The findings of this study not only give an alternative method to determine the nonclassical symmetry of a PDE, but also can help for better understanding of the essential connections between classical and nonclassical symmetries of a PDE. Concurrently, the results obtained here enhance the efficiency of the existing algorithms for determining the nonclassical symmetry of a PDE. As applications of the given algorithm, a nonclassical symmetry classification of a class of generalized Burgers equations and the nonclassical symmetries of a KdV-type equations are given within a relatively easier way and some new nonclassical symmetries have been found for the Burgers equations.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Tonglaga Bai ◽  
Temuer Chaolu

Solving nonclassical symmetry of partial differential equations (PDEs) is a challenging problem in applications of symmetry method. In this paper, an alternative method is proposed for computing the nonclassical symmetry of PDEs. The method consists of the following three steps: firstly, a relationship between the classical and nonclassical symmetries of PDEs is established; then based on the link, we give three principles to obtain additional equations (constraints) to extend the system of the determining equations of the nonclassical symmetry. The extended system is more easily solved than the original one; thirdly, we use Wu’s method to solve the extended system. Consequently, the nonclassical symmetries are determined. Due to the fact that some constraints may produce trivial results, we name the candidate constraints as “potential” ones. The method gives a new way to determine a nonclassical symmetry. Several illustrative examples are given to show the efficiency of the presented method.


Author(s):  
A. B. Chaadaev

A substitution of an non-homogeneous term and of a differential operator by the difference of Laplace operators in the direct co-ordinate system and in the turned one in the partial differential equations of first, second and third order is proposed. The numerical solution obtained by solving the substituting equation corresponds to the exact solution of the initial equations.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Seyyedeh Roodabeh Moosavi Noori ◽  
Nasir Taghizadeh

AbstractIn this study, a hybrid technique for improving the differential transform method (DTM), namely the modified differential transform method (MDTM) expressed as a combination of the differential transform method, Laplace transforms, and the Padé approximant (LPDTM) is employed for the first time to ascertain exact solutions of linear and nonlinear pantograph type of differential and Volterra integro-differential equations (DEs and VIDEs) with proportional delays. The advantage of this method is its simple and trusty procedure, it solves the equations straightforward and directly without requiring large computational work, perturbations or linearization, and enlarges the domain of convergence, and leads to the exact solution. Also, to validate the reliability and efficiency of the method, some examples and numerical results are provided.


2019 ◽  
Vol 26 (3) ◽  
pp. 341-349 ◽  
Author(s):  
Givi Berikelashvili ◽  
Manana Mirianashvili

Abstract A three-level finite difference scheme is studied for the initial-boundary value problem of the generalized Benjamin–Bona–Mahony–Burgers equation. The obtained algebraic equations are linear with respect to the values of the desired function for each new level. The unique solvability and absolute stability of the difference scheme are shown. It is proved that the scheme is convergent with the rate of order {k-1} when the exact solution belongs to the Sobolev space {W_{2}^{k}(Q)} , {1<k\leq 3} .


1970 ◽  
Vol 92 (4) ◽  
pp. 827-833 ◽  
Author(s):  
D. W. Dareing ◽  
R. F. Neathery

Newton’s method is used to solve the nonlinear differential equations of bending for marine pipelines suspended between a lay-barge and the ocean floor. Newton’s method leads to linear differential equations, which are expressed in terms of finite differences and solved numerically. The success of Newton’s method depends on initial trial solutions, which in this paper are catenaries. Iterative solutions converge rapidly toward the exact solution (pipe deflection) even though large bending moments exist in the pipe. Example calculations are given for a 48-in. pipeline suspended in 300 ft of water.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
S. Narayanamoorthy ◽  
T. L. Yookesh

We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.


1987 ◽  
Vol 101 (2) ◽  
pp. 323-342
Author(s):  
W. B. Jurkat ◽  
H. J. Zwiesler

In this article we investigate the meromorphic differential equation X′(z) = A(z) X(z), often abbreviated by [A], where A(z) is a matrix (all matrices we consider have dimensions 2 × 2) meromorphic at infinity, i.e. holomorphic in a punctured neighbourhood of infinity with at most a pole there. Moreover, X(z) denotes a fundamental solution matrix. Given a matrix T(z) which together with its inverse is meromorphic at infinity (a meromorphic transformation), then the function Y(z) = T−1(z) X(z) solves the differential equation [B] with B = T−1AT − T−1T [1,5]. This introduces an equivalence relation among meromorphic differential equations and leads to the question of finding a simple representative for each equivalence class, which, for example, is of importance for further function-theoretic examinations of the solutions. The first major achievement in this direction is marked by Birkhoff's reduction which shows that it is always possible to obtain an equivalent equation [B] where B(z) is holomorphic in ℂ ¬ {0} (throughout this article A ¬ B denotes the difference of these sets) with at most a singularity of the first kind at 0 [1, 2, 5, 6]. We call this the standard form. The question of how many further simplifications can be made will be answered in the framework of our reduction theory. For this purpose we introduce the notion of a normalized standard equation [A] (NSE) which is defined by the following conditions:(i) , where r ∈ ℕ and Ak are constant matrices, (notation: )(ii) A(z) has trace tr for some c ∈ ℂ,(iii) Ar−1 has different eigenvalues,(iv) the eigenvalues of A−1 are either incongruent modulo 1 or equal,(v) if A−1 = μI, then Ar−1 is diagonal,(vi) Ar−1 and A−1 are triangular in opposite ways,(vii) a12(z) is monic (leading coefficient equals 1) unless a12 ≡ 0; furthermore a21(z) is monic in case that a12 ≡ 0 but a21 ≢ 0.


Sign in / Sign up

Export Citation Format

Share Document