scholarly journals An Integrated Microfacies and Well Logs-Based Reservoir Characterization of Yamama Formation, Southern Iraq

2021 ◽  
pp. 3570-3586
Author(s):  
Mohanad M. Al-Ghuribawi ◽  
Rasha F. Faisal

     The Yamama Formation includes important carbonates reservoir that belongs to the Lower Cretaceous sequence in Southern Iraq. This study covers two oil fields (Sindbad and Siba) that are distributed Southeastern Basrah Governorate, South of Iraq. Yamama reservoir units were determined based on the study of cores, well logs, and petrographic examination of thin sections that required a detailed integration of geological data and petrophysical properties. These parameters were integrated in order to divide the Yamama Formation into six reservoir units (YA0, YA1, YA2, YB1, YB2 and YC), located between five cap rock units. The best facies association and petrophysical properties were found in the shoal environment, where the most common porosity types were the primary (interparticle) and secondary (moldic and vugs) . The main diagenetic process that occurred in YA0, YA2, and YB1 is cementation, which led to the filling of pore spaces by cement and subsequently decreased the reservoir quality (porosity and permeability). Based on the results of the final digital  computer interpretation and processing (CPI) performed by using the Techlog software, the units YA1 and YB2 have the best reservoir properties. The unit YB2 is characterized by a good effective porosity average, low water saturation, good permeability, and large thickness that distinguish it from other reservoir units.

2020 ◽  
pp. 1362-1369
Author(s):  
Gheed Chaseb ◽  
Thamer A. Mahdi

This study aims to evaluate reservoir characteristics of Hartha Formation in Majnoon oil field based on well logs data for three wells (Mj-1, Mj-3 and Mj-11). Log interpretation was carried out by using a full set of logs to calculate main petrophysical properties such as effective porosity and water saturation, as well as to find the volume of shale. The evaluation of the formation included computer processes interpretation (CPI) using Interactive Petrophysics (IP) software.  Based on the results of CPI, Hartha Formation is divided into five reservoir units (A1, A2, A3, B1, B2), deposited in a ramp setting. Facies associations is added to well logs interpretation of Hartha Formation, and was inferred by a microfacies analysis of thin sections from core and cutting samples. The CPI shows that the A2 is the main oil- bearing unit, which is characterized by good reservoir properties, as indicated by high effective porosity, low water saturation, and low shale volume. Less important units include A1 and A3, because they have low petrophysical properties compared to the unit A2.


2021 ◽  
pp. 2956-2969
Author(s):  
Humam Q. Hameed ◽  
Afrah H. Saleh

    The objective of this paper is determining the petrophysical properties of the Mauddud Formation (Albian-Early Turonian) in Ratawi Oil Field depending on the well logs data by using interactive petrophysical software IP (V4.5). We evaluated parameters of available logs that control the reservoir properties of the formation, including shale volume, effective porosity, and water saturation. Mauddud Formation is divided into five units, which are distinguished by various reservoir characteristics. These units are A, B, C, D, and E. Through analyzing results of the computer processed interpretation (CPI) of available wells, we observed that the main reservoir units are B and D, being distinguished by elevated values of effective porosity (10%-32%) and oil saturation (95%-30%) with low shale content (6%-30%). Whereas, units A, C, and E were characterized by low or non-reservoir properties, due to high water saturation and low values of effective porosity caused by increased volume shale.


2020 ◽  
Vol 21 (3) ◽  
pp. 9-18
Author(s):  
Ahmed Abdulwahhab Suhail ◽  
Mohammed H. Hafiz ◽  
Fadhil S. Kadhim

   Petrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly composed of sandstone interlaminated with shale according to the interpretation of density, sonic, and gamma-ray logs. Interpretation of formation lithology and petrophysical parameters shows that Nu-1 is characterized by low shale content with high porosity and low water saturation whereas Nu-2 and Nu-4 consist mainly of high laminated shale with low porosity and permeability. Nu-3 is high porosity and water saturation and Nu-5 consists mainly of limestone layer that represents the water zone.


2000 ◽  
Vol 3 (05) ◽  
pp. 444-456 ◽  
Author(s):  
A. Bahar ◽  
M. Kelkar

Summary Reservoir studies performed in the industry are moving towards an integrated approach. Most data available for this purpose are mainly from well cores and/or well logs. The translation of these data into petrophysical properties, i.e., porosity and permeability, at interwell locations that are consistent with the underlying geological description is a critical process. This paper presents a methodology that can be used to achieve this goal. The method has been applied at several field applications where full reservoir characterization study is conducted. The framework developed starts with a geological interpretation, i.e., facies and petrophysical properties, at well locations. A new technique for evaluating horizontal spatial relationships is provided. The technique uses the average properties of the vertical data to infer the low-frequency characteristics of the horizontal data. Additionally, a correction in calculating the indicator variogram, that is used to capture the facies' spatial relationship, is provided. A new co-simulation technique to generate petrophysical properties consistent with the underlying geological description is also developed. The technique uses conditional simulation tools of geostatistical methodology and has been applied successfully using field data (sandstone and carbonate fields). The simulated geological descriptions match well the geologists' interpretation. All of these techniques are combined into a single user-friendly computer program that works on a personal computer platform. Introduction Reservoir characterization is the process of defining reservoir properties, mainly, porosity and permeability, by integration of many data types. An ultimate goal of reservoir characterization is improved prediction of the future performance of the reservoir. But, before we reach that goal a journey through various processes must come to pass. The more exhaustive the processes, the more accurate the prediction will be. The most important processes in this journey are the incorporation and analysis of available geological information.1–3 The most common data types available for this purpose are in the form of well logs and/or well cores. The translation of these data into petrophysical properties, i.e., porosity and permeability, at interwell locations that are consistent with the underlying geological description is a critical step. The work presented in this paper provides a methodology to achieve this goal. This methodology is based on the geostatistical technique of conditional simulation. The step-by-step procedure starts with the work of the geologist where the isochronal planes across the whole reservoir are determined. This step is followed by the assignment of facies and petrophysical properties at well locations for each isochronal interval. Using these results, spatial analysis of the reservoir attributes, i.e., facies, porosity, and permeability, can be conducted in both vertical and horizontal directions. Due to the nature of how the data are typically distributed, i.e., abundant in the vertical direction but sparse in the horizontal direction, this step is far from a simple task, and practitioners have used various approximations to overcome this problem.4–6 A new technique for evaluating the horizontal spatial relationship is proposed in this work. The technique uses the average properties of the vertical data to infer the low-frequency characteristics of the horizontal data. Additionally, a correction in calculating the indicator variogram, that is used to capture the facies spatial relationship, is provided. Once the spatial relationship of the reservoir attributes has been established, the generation of internally consistent facies and petrophysical properties at the gridblock level can be done through a simulation process. Common practice in the industry is to perform conditional simulation of petrophysical properties by adapting a two-stage approach.7–10 In the first stage, the geological description is simulated using a conditional simulation technique such as sequential indicator simulation or Gaussian truncated simulation. In the second stage, petrophysical properties are simulated for each type of geological facies/unit using a conditional simulation technique such as sequential Gaussian simulation or simulated annealing. The simulated petrophysical properties are then filtered using the generated geological simulation to produce the final simulation result. The drawback of this approach is its inefficiency, since it requires several simulations, and hence, intensive computation time. Additionally, the effort to jointly simulate or to co-simulate interdependent attributes such as facies, porosity, and permeability has been discussed by several authors.11–13 The techniques used by these authors have produced useful results. Common disadvantages of these techniques are the requirement of tedious inference and modeling of covariances and cross covariances. Also, a large amount of CPU time is required to solve the numerical problem of a large co-kriging system. Another co-simulation technique that eliminates the requirement of solving the full co-kriging system has been proposed by Almeida.14 The technique is based on a collocated co-kriging and a Markov-type hypothesis. This hypothesis simplifies the inference and modeling of the cross covariances. Since the collocated technique is used, an assumption of a linear relationship among the attributes needs to be applied. The co-simulation technique developed in this work avoids the two-stage approach described above. The technique is based on a combination of simultaneous sequential Gaussian simulations and a conditional distribution technique. Using this technique there is no large co-kriging system to solve and there is no need to assume a relationship among reservoir attributes. The absence of co-kriging from the process also means that the user is free from developing the cross variograms. This improves the practical application of the technique.


2021 ◽  
pp. 4758-4768
Author(s):  
Ahmed Hussain ◽  
Medhat E. Nasser ◽  
Ghazi Hassan

     The main goal of this study is to evaluate Mishrif Reservoir in Abu Amood oil field, southern Iraq, using the available well logs. The sets of logs were acquired for wells AAm-1, AAm-2, AAm-3, AAm-4, and AAm-5. The evaluation included the identification of the reservoir units and the calculation of their petrophysical properties using the Techlog software. Total porosity was calculated using the neutron-density method and the values were corrected from the volume of shale in order to calculate the effective porosity. Computer processed interpretation (CPI) was accomplished for the five wells. The results show that Mishrif Formation in Abu Amood field consists of three reservoir units with various percentages of hydrocarbons that were concentrated in all of the three units, but in different wells. All of the units have high porosity, especially unit two, although it is saturated with water.


2019 ◽  
Vol 10 (3) ◽  
pp. 118-124
Author(s):  
Mustafa Yar ◽  
Syed Waqas Haider ◽  
Ghulam Nabi ◽  
Muhammad Tufail ◽  
Sajid Rahman

Present study deals with petrophysical interpretation of Zaur-03 well for reservoir characterization of sandintervals of Lower Goru Formation in Badin Block, Southern Indus Basin, Pakistan. Early Cretaceous Lower GoruFormation is the distinct reservoir that is producing hydrocarbons for two decades. Complete suite of wireline logsincluding GR log, Caliper log, SP log, Resistivity logs (MSFL, LLS, LLD), Neutron log and Density log along withwell tops and complete drilling parameters were analyzed in this study. The prime objective of this study was to markzones of interest that could act as reservoir and to evaluate reservoir properties including shale volume (Vsh), porosity(ϕ), water saturation (Sw), hydrocarbon saturation (Sh) and net pay thickness. Based on Petrophysical evaluation threezones have been marked in Lower Goru Formation, A Sand (1890m to 1930m), B-sand (1935m to 2010) and C-sand(2015m to 2100m). The average calculated parameters for evaluation of reservoir properties of Zaur-03 well depicts anaverage porosity of 8.92% and effective porosity of 4.81%. Water Saturation is calculated as 28.54% and HydrocarbonsSaturation is 71.46%. Analysis shows that Sh in Zaur-03 well is high so the production of hydrocarbons iseconomically feasible.


Author(s):  
Mustafa Yar ◽  
Syed Waqas Haider ◽  
Ghulam Nabi ◽  
Muhammad Tufail ◽  
Sajid Rahman

Present study deals with petrophysical interpretation of Zaur-03 well for reservoir characterization of sandintervals of Lower Goru Formation in Badin Block, Southern Indus Basin, Pakistan. Early Cretaceous Lower GoruFormation is the distinct reservoir that is producing hydrocarbons for two decades. Complete suite of wireline logsincluding GR log, Caliper log, SP log, Resistivity logs (MSFL, LLS, LLD), Neutron log and Density log along withwell tops and complete drilling parameters were analyzed in this study. The prime objective of this study was to markzones of interest that could act as reservoir and to evaluate reservoir properties including shale volume (Vsh), porosity(ϕ), water saturation (Sw), hydrocarbon saturation (Sh) and net pay thickness. Based on Petrophysical evaluation threezones have been marked in Lower Goru Formation, A Sand (1890m to 1930m), B-sand (1935m to 2010) and C-sand(2015m to 2100m). The average calculated parameters for evaluation of reservoir properties of Zaur-03 well depicts anaverage porosity of 8.92% and effective porosity of 4.81%. Water Saturation is calculated as 28.54% and HydrocarbonsSaturation is 71.46%. Analysis shows that Sh in Zaur-03 well is high so the production of hydrocarbons iseconomically feasible.


2019 ◽  
pp. 2656-2663
Author(s):  
Layla khudhur Abbas ◽  
Thamar Abdullah Mahdi

The reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of restricted marine facies so that; it has high volume of shale and water saturation and very low effective porosity.


2021 ◽  
Vol 54 (1E) ◽  
pp. 67-77
Author(s):  
Buraq Adnan Al-Baldawi

The petrophysical analysis is very important to understand the factors controlling the reservoir quality and production wells. In the current study, the petrophysical evaluation was accomplished to hydrocarbon assessment based on well log data of four wells of Early Cretaceous carbonate reservoir Yamama Formation in Abu-Amood oil field in the southern part of Iraq. The available well logs such as sonic, density, neutron, gamma ray, SP, and resistivity logs for wells AAm-1, AAm-2, AAm-3, and AAm-5 were used to delineate the reservoir characteristics of the Yamama Formation. Lithologic and mineralogic studies were performed using porosity logs combination cross plots such as density vs. neutron cross plot and M-N mineralogy plot. These cross plots show that the Yamama Formation consists mainly of limestone and the essential mineral components are dominantly calcite with small amounts of dolomite. The petrophysical characteristics such as porosity, water and hydrocarbon saturation and bulk water volume were determined and interpreted using Techlog software to carried out and building the full computer processed interpretation for reservoir properties. Based on the petrophysical properties of studied wells, the Yamama Formation is divided into six units; (YB-1, YB-2, YB-3, YC-1, YC-2 and YC-3) separated by dense non porous units (Barrier beds). The units (YB-1, YB-2, YC-2 and YC-3) represent the most important reservoir units and oil-bearing zones because these reservoir units are characterized by good petrophysical properties due to high porosity and low to moderate water saturation. The other units are not reservoirs and not oil-bearing units due to low porosity and high-water saturation.


2020 ◽  
pp. 3294-3307
Author(s):  
Ahmed S. Al-Banna ◽  
Nowfal A. Nassir ◽  
Ghazi H. Al-Sharaa

A comparison was conducted between two wells, Kt-1and Kt-2, in Kumait and two wells, Du-1and Du-2, in Dujaila oil fields that belong to Mishrif formation, southern Iraq.  Seismic inversion method was employed to detect oil and water reservoirs. The comparison included the behavior of acoustic impedance (AI) of fluids and the lithology with related petrophysical properties. The values of water saturation, Shale volume (Vsh), and effective porosity were compared between the AI,  two fluid reservoirs. It was found that the AI value for the oil reservoir unit is relatively low to medium, whereas it was relatively medium for the water reservoir. Effective porosity value showed, in general, an increase in the oil reservoir and a slightly decrease in the water reservoir. The Vsh and water saturation (Sw) values of the oil reservoir unit were in general lower than those in the water reservoir, which indicates the presence of hydrocarbons accumulation. The lithology and porosity are the main factors affecting the acoustic impedance values. Despite the small difference in density between oil and water, these two fluids still show perceptible variation in their properties.  


Sign in / Sign up

Export Citation Format

Share Document