scholarly journals Stability and Anti-Chaos Control of Discrete Quadratic Maps

2021 ◽  
pp. 1675-1685
Author(s):  
Sarbast H. Mikaee ◽  
George Maria Selvam ◽  
Vignesh D. Shanmugam ◽  
Bewar Beshay

A dynamical system describes the consequence of the current state of an event or particle in future. The models expressed by functions in the dynamical systems are more often deterministic, but these functions might also be stochastic in some cases. The prediction of the system's behavior in future is studied with the analytical solution of the implicit relations (Differential, Difference equations) and simulations. A discrete-time first order system of equations with quadratic nonlinearity is considered for study in this work. Classical approach of stability analysis using Jury's condition is employed to analyze the system's stability. The chaotic nature of the dynamical system is illustrated by the bifurcation theory. The enhancement of chaos is performed using Cosine Chaotification Technique (CCT). Simulations are carried out for different parameter values.

2013 ◽  
Vol 23 (01) ◽  
pp. 1350003 ◽  
Author(s):  
DANIEL FRANCO ◽  
EDUARDO LIZ

We investigate a method of chaos control in which intervention is proportional to the difference between the current state and a fixed value. We prove that this method allows to stabilize the most usual one-dimensional maps used in discrete-time models of population dynamics about a globally stable positive equilibrium. From the point of view of targeting, this technique is very flexible, and we show how to choose the control parameter values to lead the system towards the desired target. Another important feature of this control scheme in the ecological context is that it can be designed to prevent the risk of extinction in models with the so-called Allee effect. We provide a useful geometrical interpretation, and give some examples to illustrate our theoretical results.


2017 ◽  
Vol 27 (10) ◽  
pp. 1730032 ◽  
Author(s):  
Lewis Ruks ◽  
Robert A. Van Gorder

Generalized competitive modes (GCM) have been used as a diagnostic tool in order to analytically identify parameter regimes which may lead to chaotic trajectories in a given first order nonlinear dynamical system. The approach involves recasting the first order system as a second order nonlinear oscillator system, and then checking to see if certain conditions on the modes of these oscillators are satisfied. In the present paper, we will consider the inverse problem of GCM: If a system of second order oscillator equations satisfy the GCM conditions, can we then construct a first order dynamical system from it which admits chaotic trajectories? Solving the direct inverse problem is equivalent to finding solutions to an inhomogeneous form of the Euler equations. As there are no general solutions to this PDE system, we instead consider the problem for restricted classes of functions for autonomous systems which, upon obtaining the nonlinear oscillatory representation, we are able to extract at least two of the modes explicitly. We find that these methods often make finding chaotic regimes a much simpler task; many classes of parameter-function regimes that lead to nonchaos are excluded by the competitive mode conditions, and classical knowledge of dynamical systems then allows us to tune the free parameters or functions appropriately in order to obtain chaos. To find new hyperchaotic systems, a similar approach is used, but more effort and additional considerations are needed. These results demonstrate one method for constructing new chaotic or hyperchaotic systems.


2016 ◽  
Vol 136 (5) ◽  
pp. 676-682 ◽  
Author(s):  
Akihiro Ishimura ◽  
Masayoshi Nakamoto ◽  
Takuya Kinoshita ◽  
Toru Yamamoto

2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


2021 ◽  
Vol 5 (1) ◽  
pp. 14
Author(s):  
Georgi G. Gochev ◽  
Volodymyr I. Kovalchuk ◽  
Eugene V. Aksenenko ◽  
Valentin B. Fainerman ◽  
Reinhard Miller

The theoretical description of the adsorption of proteins at liquid/fluid interfaces suffers from the inapplicability of classical formalisms, which soundly calls for the development of more complicated adsorption models. A Frumkin-type thermodynamic 2-d solution model that accounts for nonidealities of interface enthalpy and entropy was proposed about two decades ago and has been continuously developed in the course of comparisons with experimental data. In a previous paper we investigated the adsorption of the globular protein β-lactoglobulin at the water/air interface and used such a model to analyze the experimental isotherms of the surface pressure, Π(c), and the frequency-, f-, dependent surface dilational viscoelasticity modulus, E(c)f, in a wide range of protein concentrations, c, and at pH 7. However, the best fit between theory and experiment proposed in that paper appeared incompatible with new data on the surface excess, Γ, obtained from direct measurements with neutron reflectometry. Therefore, in this work, the same model is simultaneously applied to a larger set of experimental dependences, e.g., Π(c), Γ(c), E(Π)f, etc., with E-values measured strictly in the linear viscoelasticity regime. Despite this ambitious complication, a best global fit was elaborated using a single set of parameter values, which well describes all experimental dependencies, thus corroborating the validity of the chosen thermodynamic model. Furthermore, we applied the model in the same manner to experimental results obtained at pH 3 and pH 5 in order to explain the well-pronounced effect of pH on the interfacial behavior of β-lactoglobulin. The results revealed that the propensity of β-lactoglobulin globules to unfold upon adsorption and stretch at the interface decreases in the order pH 3 > pH 7 > pH 5, i.e., with decreasing protein net charge. Finally, we discuss advantages and limitations in the current state of the model.


1998 ◽  
Vol 5 (2) ◽  
pp. 121-138
Author(s):  
O. Jokhadze

Abstract Some structural properties as well as a general three-dimensional boundary value problem for normally hyperbolic systems of partial differential equations of first order are studied. A condition is given which enables one to reduce the system under consideration to a first-order system with the spliced principal part. It is shown that the initial problem is correct in a certain class of functions if some conditions are fulfilled.


2009 ◽  
Vol 137 (10) ◽  
pp. 3339-3350 ◽  
Author(s):  
Ramachandran D. Nair

Abstract A second-order diffusion scheme is developed for the discontinuous Galerkin (DG) global shallow-water model. The shallow-water equations are discretized on the cubed sphere tiled with quadrilateral elements relying on a nonorthogonal curvilinear coordinate system. In the viscous shallow-water model the diffusion terms (viscous fluxes) are approximated with two different approaches: 1) the element-wise localized discretization without considering the interelement contributions and 2) the discretization based on the local discontinuous Galerkin (LDG) method. In the LDG formulation the advection–diffusion equation is solved as a first-order system. All of the curvature terms resulting from the cubed-sphere geometry are incorporated into the first-order system. The effectiveness of each diffusion scheme is studied using the standard shallow-water test cases. The approach of element-wise localized discretization of the diffusion term is easy to implement but found to be less effective, and with relatively high diffusion coefficients, it can adversely affect the solution. The shallow-water tests show that the LDG scheme converges monotonically and that the rate of convergence is dependent on the coefficient of diffusion. Also the LDG scheme successfully eliminates small-scale noise, and the simulated results are smooth and comparable to the reference solution.


Sign in / Sign up

Export Citation Format

Share Document