scholarly journals β-Lactoglobulin Adsorption Layers at the Water/Air Surface: 5. Adsorption Isotherm and Equation of State Revisited, Impact of pH

2021 ◽  
Vol 5 (1) ◽  
pp. 14
Author(s):  
Georgi G. Gochev ◽  
Volodymyr I. Kovalchuk ◽  
Eugene V. Aksenenko ◽  
Valentin B. Fainerman ◽  
Reinhard Miller

The theoretical description of the adsorption of proteins at liquid/fluid interfaces suffers from the inapplicability of classical formalisms, which soundly calls for the development of more complicated adsorption models. A Frumkin-type thermodynamic 2-d solution model that accounts for nonidealities of interface enthalpy and entropy was proposed about two decades ago and has been continuously developed in the course of comparisons with experimental data. In a previous paper we investigated the adsorption of the globular protein β-lactoglobulin at the water/air interface and used such a model to analyze the experimental isotherms of the surface pressure, Π(c), and the frequency-, f-, dependent surface dilational viscoelasticity modulus, E(c)f, in a wide range of protein concentrations, c, and at pH 7. However, the best fit between theory and experiment proposed in that paper appeared incompatible with new data on the surface excess, Γ, obtained from direct measurements with neutron reflectometry. Therefore, in this work, the same model is simultaneously applied to a larger set of experimental dependences, e.g., Π(c), Γ(c), E(Π)f, etc., with E-values measured strictly in the linear viscoelasticity regime. Despite this ambitious complication, a best global fit was elaborated using a single set of parameter values, which well describes all experimental dependencies, thus corroborating the validity of the chosen thermodynamic model. Furthermore, we applied the model in the same manner to experimental results obtained at pH 3 and pH 5 in order to explain the well-pronounced effect of pH on the interfacial behavior of β-lactoglobulin. The results revealed that the propensity of β-lactoglobulin globules to unfold upon adsorption and stretch at the interface decreases in the order pH 3 > pH 7 > pH 5, i.e., with decreasing protein net charge. Finally, we discuss advantages and limitations in the current state of the model.

2019 ◽  
Vol 14 (1-2) ◽  
pp. 295-297
Author(s):  
Sergej A. Borisov

For more than twenty years, the Institute of Slavic Studies of the Russian Academy of Sciences celebrates the Day of Slavic Writing and Culture with a traditional scholarly conference.”. Since 2014, it has been held in the young scholars’ format. In 2019, participants from Moscow, St. Petersburg, Kazan, Togliatti, Tyumen, Yekaterinburg, and Rostov-on-Don, as well as Slovakia, the Czech Republic, Hungary, and Romania continued this tradition. A wide range of problems related to the history of the Slavic peoples from the Middle Ages to the present time in the national, regional and international context were discussed again. Participants talked about the typology of Slavic languages and dialects, linguo-geography, socio- and ethnolinguistics, analyzed formation, development, current state, and prospects of Slavic literatures, etc.


Author(s):  
John Campbell ◽  
Joey Huston ◽  
Frank Krauss

At the core of any theoretical description of hadron collider physics is a fixed-order perturbative treatment of a hard scattering process. This chapter is devoted to a survey of fixed-order predictions for a wide range of Standard Model processes. These range from high cross-section processes such as jet production to much more elusive reactions, such as the production of Higgs bosons. Process by process, these sections illustrate how the techniques developed in Chapter 3 are applied to more complex final states and provide a summary of the fixed-order state-of-the-art. In each case, key theoretical predictions and ideas are identified that will be the subject of a detailed comparison with data in Chapters 8 and 9.


2020 ◽  
Vol 12 (17) ◽  
pp. 2760
Author(s):  
Gourav Misra ◽  
Fiona Cawkwell ◽  
Astrid Wingler

Remote sensing of plant phenology as an indicator of climate change and for mapping land cover has received significant scientific interest in the past two decades. The advancing of spring events, the lengthening of the growing season, the shifting of tree lines, the decreasing sensitivity to warming and the uniformity of spring across elevations are a few of the important indicators of trends in phenology. The Sentinel-2 satellite sensors launched in June 2015 (A) and March 2017 (B), with their high temporal frequency and spatial resolution for improved land mapping missions, have contributed significantly to knowledge on vegetation over the last three years. However, despite the additional red-edge and short wave infra-red (SWIR) bands available on the Sentinel-2 multispectral instruments, with improved vegetation species detection capabilities, there has been very little research on their efficacy to track vegetation cover and its phenology. For example, out of approximately every four papers that analyse normalised difference vegetation index (NDVI) or enhanced vegetation index (EVI) derived from Sentinel-2 imagery, only one mentions either SWIR or the red-edge bands. Despite the short duration that the Sentinel-2 platforms have been operational, they have proved their potential in a wide range of phenological studies of crops, forests, natural grasslands, and other vegetated areas, and in particular through fusion of the data with those from other sensors, e.g., Sentinel-1, Landsat and MODIS. This review paper discusses the current state of vegetation phenology studies based on the first five years of Sentinel-2, their advantages, limitations, and the scope for future developments.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 71
Author(s):  
Marianna Martinello ◽  
Franco Mutinelli

Bee products have been used since ancient times both for their nutritional value and for a broad spectrum of therapeutic purposes. They are deemed to be a potential source of natural antioxidants that can counteract the effects of oxidative stress underlying the pathogenesis of many diseases. In view of the growing interest in using bioactive substances from natural sources to promote health and reduce the risk of developing certain illnesses, this review aims to update the current state of knowledge on the antioxidant capacity of bee products such as honey, pollen, propolis, beeswax, royal jelly and bee venom, and on the analytical methods used. The complex, variable composition of these products and the multitude of analytical methods used to study their antioxidant activities are responsible for the wide range of results reported by a plethora of available studies. This suggests the need to establish standardized methods to more efficiently evaluate the intrinsic antioxidant characteristics of these products and make the data obtained more comparable.


Genetics ◽  
2000 ◽  
Vol 155 (4) ◽  
pp. 2011-2014 ◽  
Author(s):  
Richard R Hudson

Abstract A new statistic for detecting genetic differentiation of subpopulations is described. The statistic can be calculated when genetic data are collected on individuals sampled from two or more localities. It is assumed that haplotypic data are obtained, either in the form of DNA sequences or data on many tightly linked markers. Using a symmetric island model, and assuming an infinite-sites model of mutation, it is found that the new statistic is as powerful or more powerful than previously proposed statistics for a wide range of parameter values.


Parasitology ◽  
1999 ◽  
Vol 117 (7) ◽  
pp. 191-203 ◽  
Author(s):  
M. S. TALARY ◽  
J. P. H. BURT ◽  
R. PETHIG

There has been an enormous growth in the development of biotechnological applications, where advances in the techniques of microelectronic fabrication and the technologies of miniaturization and integration in semiconductor industries are being applied to the production of Laboratory-on-a-Chip devices. The aim of this development is to create devices that will perform the same processes that are currently carried out in the laboratory in reduced timescales, at a lower cost, requiring less reagents, and with a greater resolution of detection and specificity. The expectations of this Laboratory-on-a-Chip revolution is that this technology will facilitate rapid advances in gene discovery, genetic mapping and gene expression with broader applications ranging from infectious diseases and cancer diagnostics to food quality and environmental testing. A review of the current state of development in this field reveals the scale of the ongoing revolution and serves to highlight the advances that can be perceived in the development of Laboratory-on-a-Chip technologies. Since miniaturization can be applied to such a wide range of laboratory processes, some of the sub-units that can be used as building blocks in these devices are described, with a brief description of some of the fabrication processes that can be used to create them.


Author(s):  
Paul S. Addison

Redundancy: it is a word heavy with connotations of lacking usefulness. I often hear that the rationale for not using the continuous wavelet transform (CWT)—even when it appears most appropriate for the problem at hand—is that it is ‘redundant’. Sometimes the conversation ends there, as if self-explanatory. However, in the context of the CWT, ‘redundant’ is not a pejorative term, it simply refers to a less compact form used to represent the information within the signal. The benefit of this new form—the CWT—is that it allows for intricate structural characteristics of the signal information to be made manifest within the transform space, where it can be more amenable to study: resolution over redundancy. Once the signal information is in CWT form, a range of powerful analysis methods can then be employed for its extraction, interpretation and/or manipulation. This theme issue is intended to provide the reader with an overview of the current state of the art of CWT analysis methods from across a wide range of numerate disciplines, including fluid dynamics, structural mechanics, geophysics, medicine, astronomy and finance. This article is part of the theme issue ‘Redundancy rules: the continuous wavelet transform comes of age’.


2016 ◽  
Vol 94 (8) ◽  
pp. 680-686
Author(s):  
Huiqing Li ◽  
Jing Wei ◽  
Youming Dong ◽  
Zhiyue Yu

The major bovine milk protein β-lactoglobulin (β-LG), a member of the lipocalin superfamily, can bind a wide range of ligands and act as a transporter. In the present study, the combination of the hydrophobic molecule 2-(p-toluidino)-6-naphthalenesulfonic acid sodium salt (TNS) with β-LG was analyzed using fluorescence spectroscopy and AutoDock modeling to discern the major binding sites of the protein and to determine the capacity of other small ligands to bind with β-LG by utilizing TNS as a reference. The experimental data indicate that in a neutral pH environment, TNS is located in the hydrophobic domain of the protein, 2.5 nm away from the Trp19 residues of β-LG. The binding constant of the small molecule to β-LG is (3.30 ± 0.32) × 106 (mol L–1)−1. An interaction model between the ligand and β-LG was developed, and AutoDock modeling also demonstrates that the ligand is located in the central hydrophobic calyx of β-LG within the regions covered by the Förster radius of the Trp19–ligand pair. Although the interaction between the ligand and β-LG is affected by increasing ion strength, pH change, and heat treatment, the complex is maintained until the secondary structure of β-LG is destroyed. Additionally, the ligand binding stabilizes the folding of β-LG. The binding constants of sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) to β-LG were obtained using competitive ligand binding measurements. With a sensitive fluorescence signal and stable complex, the ligand could be utilized as a reference to detect the binding of other small ligands to β-LG.


2011 ◽  
Vol 688 ◽  
pp. 66-87 ◽  
Author(s):  
Efrath Barta

AbstractThe flow regime in the vicinity of oscillatory slender bodies, either an isolated one or a row of many bodies, immersed in viscous fluid (i.e. under creeping flow conditions) is studied. Applying the slender-body theory by distributing proper singularities on the bodies’ major axes yields reasonably accurate and easily computed solutions. The effect of the oscillations is revealed by comparisons with known Stokes flow solutions and is found to be most significant for motion along the normal direction. Streamline patterns associated with motion of a single body are characterized by formation and evolution of eddies. The motion of adjacent bodies results, with a reduction or an increase of the drag force exerted by each body depending on the direction of motion and the specific geometrical set-up. This dependence is demonstrated by parametric results for frequency of oscillations, number of bodies, their slenderness ratio and the spacing between them. Our method, being valid for a wide range of parameter values and for densely packed arrays of rods, enables simulation of realistic flapping of bristled wings of some tiny insects and of locomotion of flagella and ciliated micro-organisms, and might serve as an efficient tool in the design of minuscule vehicles. Its potency is demonstrated by a solution for the flapping of thrips.


Sign in / Sign up

Export Citation Format

Share Document