scholarly journals 2D Seismic Reflection Study of Mishrif and Yamama Formations in East Nasiriya Area, Southern Iraq

2021 ◽  
pp. 2603-2613
Author(s):  
Mohammed S. Faisal ◽  
Kamal K. Ali

The structural division and stratigraphic estimation of the perceptible geological basin are the most important for oil and gas exploration. This study attempts to obtain subsurface geology in parts of east Nasiriya, southern Iraq using of seismic data and some adjacent well information for structural and stratigraphic interpretation. To achieve this goal, 2D seismic data in SEG-Y format were used with velocity and logging data. The seismic profile is then interpreted as a two-dimensional (time domain and depth domain) contour map, which is  represented  as a real subsurface geology. Reflectors from the Mishrif and Yamama Formations (Cretaceous period) were detected. According to the structural interpretation of the selected reflectors, TWT maps of the horizon were prepared, and  depth maps were drawn, which show some noses structures in the study area. The seismic interpretation in this area confirmed the existence of certain stratigraphic features in the studied strata. Some distribution mounds and flat spots were also observed which similar to the characteristics of the Nasiriya oil field stratigraphic features that are the considered as hydrocarbon indicators.

2021 ◽  
Vol 54 (2B) ◽  
pp. 55-64
Author(s):  
Belal M. Odeh

This research includes structure interpretation of the Yamama Formation (Lower Cretaceous) and the Naokelekan Formation (Jurassic) using 2D seismic reflection data of the Tuba oil field region, Basrah, southern Iraq. The two reflectors (Yamama and Naokelekan) were defined and picked as peak and tough depending on the 2D seismic reflection interpretation process, based on the synthetic seismogram and well log data. In order to obtain structural settings, these horizons were followed over all the regions. Two-way travel-time maps, depth maps, and velocity maps have been produced for top Yamama and top Naokelekan formations. The study concluded that certain longitudinal enclosures reflect anticlines in the east and west of the study area representing Zubair and Rumaila fold confined between them a fold consist of two domes represents Tuba fold with the same trending of Zubair and Rumaila structures. The study confirmed the importance of this field as a reservoir of the accumulation of hydrocarbons.


2013 ◽  
Vol 448-453 ◽  
pp. 3723-3727 ◽  
Author(s):  
Yun Pan ◽  
Zong Xiu Wang ◽  
Mao Pan

There are a lot of Permian volcanic rocks which are widely distributed in Tarim Basin. Because of the shielding effect of the volcanic rocks to the underlying structure, the distribution of the volcanic rocks in Tarim Basin is very important to the deep oil and gas exploration. However, with the progress of oil exploration in Tarim oil field in recent years, much more logging and seismic data is available. Based on the model of logging-seismic integrated identification, the distribution of the Permian volcanic rocks is revised by using the drilling, logging and seismic data. It shows that the rhyolite is mainly distributed in the north basin, and the basalt is widely distributed in the basin. Moreover, the basalt has larger area than which delineated by other people.


2020 ◽  
Vol 53 (2D) ◽  
pp. 128-147
Author(s):  
Mina Hatif

Three formations were chosen in the present study, these are Yamamma, Zubair and Mishrif formations, which are considered the main reservoirs at Zubair oilfield southern Iraq, especially during the Cretaceous period. The studied reservoirs are distinguished by different rocks, facies and environmental specifications. Thirteen wells were selected for the present study these are: Zb-44, Zb-202, Zb-10, Zb-294, Zb-81, Zb-233, Zb-329, Zb-49, Zb-9, Zb-156, Zb-8, Zb-256 and Zb-187. To studying the geochemical parameters of crude oils. Geochemical analysis of crude oil was applied. The results of the isotope analyses indicate that the source rock of oil is a mature marine rock that contains a high percentage of sulfur. The American Petroleum Institute values are ​​ranging from 35-20 indicate medium to light hydrocarbons. The results show that the Kerogen type is type II which is derived from marine algae organism. The burial history indicates that the subsidence is high at the late Jurassic - early Cretaceous period and also at the Miocene, and the slow subsidence during the late Cretaceous and moderate subsidence at the Paleogene. The results of the Vitrinite Reflection and Production Index show that the thermal maturity is happened at the early to the main stage, which was represented at the Zb-44 and Zb-202 wells. The transformation ratio of Zubair and Yamamma formations indicates that the possibility of kerogen to yield oil and gas is high in the future with temperature increasing.


10.1144/sp509 ◽  
2021 ◽  
Vol 509 (1) ◽  
pp. NP-NP
Author(s):  
J. Hendry ◽  
P. Burgess ◽  
D. Hunt ◽  
X. Janson ◽  
V. Zampetti

Modern seismic data have become an essential toolkit for studying carbonate platforms and reservoirs in impressive detail. Whilst driven primarily by oil and gas exploration and development, data sharing and collaboration are delivering fundamental geological knowledge on carbonate systems, revealing platform geomorphologies and how their evolution on millennial time scales, as well as kilometric length scales, was forced by long-term eustatic, oceanographic or tectonic factors. Quantitative interrogation of modern seismic attributes in carbonate reservoirs permits flow units and barriers arising from depositional and diagenetic processes to be imaged and extrapolated between wells.This volume reviews the variety of carbonate platform and reservoir characteristics that can be interpreted from modern seismic data, illustrating the benefits of creative interaction between geophysical and carbonate geological experts at all stages of a seismic campaign. Papers cover carbonate exploration, including the uniquely challenging South Atlantic pre-salt reservoirs, seismic modelling of carbonates, and seismic indicators of fluid flow and diagenesis.


2021 ◽  
pp. 1-45
Author(s):  
Qin Su ◽  
Huahui Zeng ◽  
Yancan Tian ◽  
HaiLiang Li ◽  
Lei Lyu ◽  
...  

Seismic processing and interpretation techniques provide important tools for the oil and gas exploration of the Songliao Basin in eastern China, which is dominated by terrestrial facies. In the Songliao Basin, a large number of thin-sand reservoirs are widely distributed, which are the primary targets of potential oil and gas exploration and exploitation. An important job of the exploration in the Songliao Basin is to accurately describe the distribution of these thin-sand belts and the sand-body shapes. However, the thickness of these thin-sand reservoirs are generally below the resolution of the conventional seismic processing. Most of the reservoirs are thin-interbeds of sand and mudstones with strong vertical and lateral variations. This makes it difficult to accurately predict the vertical and horizontal distribution of the thin-sand bodies using the conventional seismic processing and interpretation methods. Additionally, these lithologic traps are difficult to identify due to the complex controlling factor and distribution characteristics, and strong concealment. These challenges motivate us to improve the seismic data quality to help delineate the thin-sand reservoirs. In this paper, we use the broadband, wide-azimuth, and high-density integrated seismic exploration technique to help delineate the thin-reservoirs. We first use field single-point excitation and single-point receiver acquisition to obtain seismic data with wide frequency-bands, wide-azimuth angles, and high folds, which contain rich geological information. Next, we perform the near-surface Q-compensation, viscoelastic prestack time migration, seismic attributes, and seismic waveform indication inversion on the new acquired seismic data. The 3D case study indicates the benefits of improving the imaging of thin-sand body and the accuracy of inversion and reservoir characterization using the method in this paper.


2017 ◽  
Vol 5 (3) ◽  
pp. SJ81-SJ90 ◽  
Author(s):  
Kainan Wang ◽  
Jesse Lomask ◽  
Felix Segovia

Well-log-to-seismic tying is a key step in many interpretation workflows for oil and gas exploration. Synthetic seismic traces from the wells are often manually tied to seismic data; this process can be very time consuming and, in some cases, inaccurate. Automatic methods, such as dynamic time warping (DTW), can match synthetic traces to seismic data. Although these methods are extremely fast, they tend to create interval velocities that are not geologically realistic. We have described the modification of DTW to create a blocked dynamic warping (BDW) method. BDW generates an automatic, optimal well tie that honors geologically consistent velocity constraints. Consequently, it results in updated velocities that are more realistic than other methods. BDW constrains the updated velocity to be constant or linearly variable inside each geologic layer. With an optimal correlation between synthetic seismograms and surface seismic data, this algorithm returns an automatically updated time-depth curve and an updated interval velocity model that still retains the original geologic velocity boundaries. In other words, the algorithm finds the optimal solution for tying the synthetic to the seismic data while restricting the interval velocity changes to coincide with the initial input blocking. We have determined the application of the BDW technique on a synthetic data example and field data set.


2003 ◽  
Author(s):  
Yuan‐Chi Chang ◽  
Matthew Hill ◽  
Chung‐Sheng Li ◽  
Randy Pepper

2020 ◽  
Vol 8 (1) ◽  
pp. SA49-SA61
Author(s):  
Huihuang Tan ◽  
Donghong Zhou ◽  
Shengqiang Zhang ◽  
Zhijun Zhang ◽  
Xinyi Duan ◽  
...  

Amplitude-variation-with-offset (AVO) technique is one of the primary quantitative hydrocarbon discrimination methods with prestack seismic data. However, the prestack seismic data are usually have low data quality, such as nonflat gathers and nonpreserved amplitude due to absorption, attenuation, and/or many other reasons, which usually lead to a wrong AVO response. The Neogene formations in the Huanghekou area of the Bohai Bay Basin are unconsolidated clastics with a high average porosity, and we find that the attenuation on seismic signal is very strong, which causes an inconsistency of AVO responses between seismic gathers and its corresponding synthetics. Our research results indicate that the synthetic AVO response can match the field seismic gathers in the low-frequency end, but not in the high-frequency components. Thus, we have developed an AVO response correction method based on high-resolution complex spectral decomposition and low-frequency constraint. This method can help to achieve a correct high-resolution AVO response. Its application in Bohai oil fields reveals that it is an efficient way to identify hydrocarbons in rocks, which provides an important technique for support in oil and gas exploration and production in this area.


2016 ◽  
Vol 34 (1) ◽  
Author(s):  
Lourenildo W.B. Leite ◽  
Wildney W.S. Vieira ◽  
Boris Sibiryakov

ABSTRACT. The present paper is part of a major research study that has for objective the prediction of stress in sedimentary basins, as a contribution to geological and engineering methods and techniques for oil and gas exploration. Such an attractive and important scientific theme is based on the knowledge of the compressional...Keywords: sedimentary basin modeling, pressure prediction, subsurface stress. RESUMO. O presente trabalho faz parte de um projeto de estudomaior que tem por objetivo a predição de tensões embacias sedimentares, como uma contribuição aos métodos e técnicas da geologia e da engenharia de exploração de óleo e gás. Este assunto científico, atrativo e importante, é baseado...Palavras-chave: modelagem de bacia sedimentar, predição de pressão, tensão na subsuperfície.


2021 ◽  
Vol 54 (1E) ◽  
pp. 54-66
Author(s):  
Rafea Ahmed Abdullah ◽  
Muwafaq Al-Shahwan

The West Qurna I and II supergiant oilfields are one of the largest oil-producing fields, southern Iraq. They are parts of a supergiant anticline that extends more than 120 km. This anticline is oriented north-northwest and it's included the South Rumaila, North Rumaila, West Qurna I, and West Qurna II. The aim of this study is to integrate all available data to provide a better understanding of the subsurface structure for both West Qurna I and II. 3-D high-quality seismic data (in SEGY format) that executed for both oilfields independently were used as a key tool to supply perfect structural images. In addition to Zero-Offset Vertical Seismic Profile, set of well logs and well tops from 569 wells that distributed over the study area, 423 wells are located in West Qurna I, 146 wells situated in West Qurna II. OpenWorks, DecisionSpace G1 10ep and Seismic Analysis 10ep software of Halliburton were used to perform the 3D seismic interpretation and create structure maps (in-depth domain). While the cross-sections were done by Schlumberger software (Petrel 2018). Finally, the well tops were picked using Geolog 8.0. The study concludes that the structure of West Qurna I and II can be classified as an antiform, non-cylindrical, horizontal, gentle, brachy, asymmetrical anticline.


Sign in / Sign up

Export Citation Format

Share Document