scholarly journals The Dynamics of Biological Models with Optimal Harvesting

2021 ◽  
pp. 3039-3051
Author(s):  
Sadiq Al-Nassir

      This paper aims to introduce a concept of an equilibrium point of a dynamical system which will call it almost global asymptotically stable. We also propose and analyze a prey-predator model with a suggested  function growth in prey species. Firstly the existence and local stability of all its equilibria are studied. After that the model is extended to an optimal control problem to obtain an optimal harvesting strategy. The discrete time version of Pontryagin's maximum principle is applied to solve the optimality problem. The characterization of the optimal harvesting variable and the adjoint variables are derived. Finally these theoretical results are demonstrated with numerical simulations.

Author(s):  
Sudhakar Yadav ◽  
Vivek Kumar

This study develops a mathematical model for describing the dynamics of the banana-nematodes and its pest detection method to help banana farmers. Two criteria: the mathematical model and the type of nematodes pest control system are discussed. The sensitivity analysis, local stability, global stability, and the dynamic behavior of the mathematical model are performed. Further, we also develop and discuss the optimal control mathematical model. This mathematical model represents various modes of management, including the initial release of infected predators as well as the destroying of nematodes. The theoretical results are shown and verified by numerical simulations.


2019 ◽  
Vol 17 (1) ◽  
pp. 646-652
Author(s):  
Qin Yue

Abstract We revisit a prey-predator model with stage structure for predator, which was proposed by Tapan Kumar Kar. By using the differential inequality theory and the comparison theorem of the differential equation, we show that the prey free equilibrium is globally asymptotically stable under some suitable assumption. Our study shows that although the predator species has other food resource, if the amount of the predator species is too large, it could also do irreversible harm to the prey species, and this could finally lead to the extinction of the prey species. Our result supplement and complement some known results.


2020 ◽  
pp. 223-232
Author(s):  
Oday Kassim Shalsh ◽  
Sadiq Al-Nassir

In this work, the dynamic behavior of discrete models is analyzed with Beverton- Holt function growth . All equilibria are found . The existence and local stability are investigated of all its equilibria.. The optimal harvest strategy is done for the system by using Pontryagin’s maximum principle to solve the optimality problem. Finally numerical simulations are used to solve the optimality problem and to enhance the results of mathematical analysis


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Amit Sharma ◽  
Bhanu Gupta

The aim of this paper is to study the dynamics of fishery resource with reserve area in the presence of bird predator. The aquatic region under investigation is divided into two zones: one free for fishing and another restricted for any kind of fishery. The criteria of biological and bionomic equilibrium of system are established. The points of local stability, global stability, and instability are obtained for the proposed model. An optimal harvesting policy is established using Pontryagin’s maximum principle. At last the theoretical results obtained are illustrated with the help of numerical simulation.


2019 ◽  
Vol 6 (1) ◽  
pp. 1-17
Author(s):  
W. Abid ◽  
R. Yafia ◽  
M. A. Aziz-Alaoui ◽  
Ahmed Aghriche

AbstractIn this work, we consider the optimal harvesting and stability problems of a prey-predator model with modified Leslie-Gower and Holling-type II functional response. The model is governed by a system of three differential equations which describe the interactions between prey, predator and harvesting effort. Boundedness and existence of solutions for this system are showed. The existence and local stability of the possible steady states are analyzed and the conditions of global stability of the interior equilibrium are established by using the Lyapunov function, we prove also the occurrence of Hopf bifurcation at this point. By using the Pontryagin’s maximal principle, we formulate and we solve the problem of the optimal harvest policy. In the end, some numerical simulations are given to support our theoretical results.


2019 ◽  
Vol 4 (2) ◽  
pp. 349 ◽  
Author(s):  
Oluwatayo Michael Ogunmiloro ◽  
Fatima Ohunene Abedo ◽  
Hammed Kareem

In this article, a Susceptible – Vaccinated – Infected – Recovered (SVIR) model is formulated and analysed using comprehensive mathematical techniques. The vaccination class is primarily considered as means of controlling the disease spread. The basic reproduction number (Ro) of the model is obtained, where it was shown that if Ro<1, at the model equilibrium solutions when infection is present and absent, the infection- free equilibrium is both locally and globally asymptotically stable. Also, if Ro>1, the endemic equilibrium solution is locally asymptotically stable. Furthermore, the analytical solution of the model was carried out using the Differential Transform Method (DTM) and Runge - Kutta fourth-order method. Numerical simulations were carried out to validate the theoretical results. 


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alexander Mikhaylov ◽  
Victor Mikhaylov

Abstract We consider dynamic inverse problems for a dynamical system associated with a finite Jacobi matrix and for a system describing propagation of waves in a finite Krein–Stieltjes string. We offer three methods of recovering unknown parameters: entries of a Jacobi matrix in the first problem and point masses and distances between them in the second, from dynamic Dirichlet-to-Neumann operators. We also answer a question on a characterization of dynamic inverse data for these two problems.


2021 ◽  
Vol 31 (03) ◽  
pp. 2150050
Author(s):  
Demou Luo ◽  
Qiru Wang

Of concern is the global dynamics of a two-species Holling-II amensalism system with nonlinear growth rate. The existence and stability of trivial equilibrium, semi-trivial equilibria, interior equilibria and infinite singularity are studied. Under different parameters, there exist two stable equilibria which means that this model is not always globally asymptotically stable. Together with the existence of all possible equilibria and their stability, saddle connection and close orbits, we derive some conditions for transcritical bifurcation and saddle-node bifurcation. Furthermore, the global dynamics of the model is performed. Next, we incorporate Allee effect on the first species and offer a new analysis of equilibria and bifurcation discussion of the model. Finally, several numerical examples are performed to verify our theoretical results.


2018 ◽  
Vol 12 (2) ◽  
pp. 171
Author(s):  
Enobong E. Joshua ◽  
Cec Ekemini T. Akpan

This paper investigates the global asymptotic stability of a Delayed Extended Rosenzweig-MacArthur Model via Lyapunov-Krasovskii functionals. Frequency sweeping technique ensures stability switches as the delay parameter increases and passes the critical bifurcating threshold.The model exhibits a local Hopf-bifurcation from asymptotically stable oscillatory behaviors to unstable strange chaotic behaviors dependent of the delay parameter values.Hyper-chaotic fluctuations were observed for large delay values far away from the critical delay margin. Numerical simulations of experimental data obtained via non-dimensionalization have shown the applications of theoretical results in ecological population dynamics.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jing Hui ◽  
Jian-Hua Pang ◽  
Dong-Rong Lin

We consider an epidemic-species hybrid dynamical system. The disease is spread among the prey only and the infected prey can reproduce virus. The predator only eats the infected prey. Mathematical analyses are given for the system with regard to the existence of equilibria, local stability, Hopf bifurcation, and the orbital stability of the Hopf bifurcating limit cycle. We further analyse the system under impulsive releasing of virus and predator.


Sign in / Sign up

Export Citation Format

Share Document