Induction in Vivo of Cartilage Grafts for Craniofacial Reconstruction

1998 ◽  
Vol 12 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Henriette L. Verwoerd-Verhoef ◽  
Jim K. Bean ◽  
Gerjo J.V.M. Van Osch ◽  
Paul G.J. Ten Koppel ◽  
Jaap A. Meeuwis ◽  
...  

In the craniofacial region, defects of cartilage structures are preferably reconstructed with autologous cartilage. Donor-site morbidity related to the creation of a new defect elsewhere, and a lack of growth potential of the graft—mandatory in children—have stimulated investigators to find other ways to generate new “extra” cartilage. Several biomaterials have been tested as a matrix for the ingrowth of (peri)chondroblasts in experimental animals. In young (growing) rabbits we have developed a process of heterotopic cartilage induction with the use of a demineralized (bovine) bone matrix which is enfolded in a pedicled flap of ear perichondrium for at least three weeks. During this period the demineralized matrix is colonized by macrophages and polymorphonuclear cells which start a process of complete biodegradation of the material. Simultaneously, the collagen matrix is invaded by mesenchymal cells, originating from the perichondrium and differentiating into chondroblasts and later, into chondrocytes forming the intercellular substance. The developing, very young cartilage could be demonstrated as collagen type II, thus, hyaline cartilage. When applied with its adherent perichondrium as a graft, it merges easily with the more matured host cartilage and even appears to be capable of further growth. Therefore, it seems suitable for the reconstruction of a cartilaginous defect in growing cartilaginous structures like the nasal septum or the larynx.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Marie Protais ◽  
Maxime Laurent-Perrot ◽  
Mickaël Artuso ◽  
M. Christian Moody ◽  
Alain Sautet ◽  
...  

Abstract Background Irreparable rotator cuff tears are common and difficult to treat. Techniques for “filling the loss of substance” require fixation to the rotator cuff stump (tendon augmentation) or to the glenoid (superior capsular reconstruction), which are complicated by the narrow working zone of the subacromial space. The main objective of this study was to determine whether a braided graft of gracilis (GR) and semitendinosus (ST) could fill a loss of tendon substance from an irreparable rupture of the supra- and infraspinatus, by fixing the graft to the greater tuberosity and the spine of the scapula. Methods This was a cadaveric study with the use of ten specimens. The GRA and ST tendons were harvested, braided and reinforced with suture. An experimental tear of the supraspinatus (SS) and upper infraspinatus (IS) retracted at the glenoid was made. The GRAST transplant was positioned over the tear. The transplant was attached to the greater tuberosity by two anchors and then attached to the medial third of the scapular spine by trans-osseous stitching. The percentage of filling obtained was then measured and passive mobility of the shoulder was assessed. We proceeded to the same technique under arthroscopy for a 73 years old patient whom we treated for a painful shoulder with irreparable cuff tear. We inserted a GRAST graft using arthroscopy. Results The Braided-GRAST allowed a 100% filling of the loss of tendon substance. Mobility was complete in all cases. Conclusion This technique simplifies the medial fixation and restores the musculo-tendinous chain where current grafting techniques only fill a tendinous defect. The transplant could have a subacromial “spacer” effect and lower the humeral head. The donor site morbidity and the fate of the transplant in-vivo are two limits to be discussed. This anatomical study paves the way for clinical experimentation.


Author(s):  
Ozan Karaman ◽  
Cenk Celik ◽  
Aylin Sendemir Urkmez

Cranial, maxillofacial, and oral fractures, as well as large bone defects, are currently being treated by auto- and allograft procedures. These techniques have limitations such as immune response, donor-site morbidity, and lack of availability. Therefore, the interest in tissue engineering applications as replacement for bone graft has been growing rapidly. Typical bone tissue engineering models require a cell-supporting scaffold in order to maintain a 3-dimensional substrate mimicking in vivo extracellular matrix for cells to attach, proliferate and function during the formation of bone tissue. Combining the understanding of molecular and structural biology with materials engineering and design will enable new strategies for developing biological tissue constructs with clinical relevance. Self-assembled biomimetic scaffolds are especially suitable as they provide spatial and temporal regulation. Specifically, self-assembling peptides capable of in situ gelation serve as attractive candidates for minimally invasive injectable therapies in bone tissue engineering applications.


2003 ◽  
Vol 11 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Christopher Robert Geddes ◽  
Maolin Tang ◽  
Daping Yang ◽  
Steven F Morris

Background Musculocutaneous perforator flaps offer advantages over musculocutaneous flaps, including reduced donor site morbidity, more predictable reconstruction of soft tissue deformities, and a wider variety of flap options. Perforator flaps are becoming increasingly popular for many applications. In the present study, we set out to examine the various perforators of the thoracoacromial axis through the pectoralis major (PM) muscle with respect to their suitability for transfer to the head and neck region as a pedicled flap. Methods A series of 10 fresh cadavers were injected with lead oxide, gelatin and water (250 mL/kg) through the femoral vessels. The cadavers were cooled and the integument was removed. Perforating vessels from the underlying muscles were marked and the resulting angiograms of the integument and deep tissues were compared with the dissection notes describing the course, size and distribution of the perforating vessels. Results The perforators through the PM muscle to the overlying skin included three regional groups: perforators of the thoracoacromial axis; perforators of the medial intercostal vessels; and perforators of the lateral thoracic artery. The major group of perforators supplying the overlying skin was from the intercostal vessels. However, the thoracoacromial axis did consistently give rise to perforators in the upper portion of the PM muscle. In particular, there were reliable perforators from the clavicular and deltoid branches of the thoracoacromial artery. Discussion The present study illustrates the potential clinical applications of a series of perforator flaps based on the thoracoacromial axis, which may be useful in head and neck reconstructive surgery.


2020 ◽  
Vol 9 (7) ◽  
pp. 2211 ◽  
Author(s):  
Salvatore Battaglia ◽  
Stefano Ratti ◽  
Lucia Manzoli ◽  
Claudio Marchetti ◽  
Laura Cercenelli ◽  
...  

Head and neck reconstructive surgeons have recently explored new perspectives in bone restoration using periosteum carrier flaps. Following this idea, we explored the possibility of harvesting a galeo-pericranial flap. The present work studies the vascular supply of the pericranial temporo-parietal region in order to assess the possibility of harvesting a galeo-pericranial flap based on the superficial temporalis vascularization. Anatomical dissections were performed at the Anatomical Institute of the University of Bologna on eight donor cadavers. Then we performed the harvesting of the flap in vivo on eight patients. We introduced augmented reality (AR) to facilitate anatomical visualisation during free flap harvesting. Augmented reality merges virtual and actual objects, allowing direct observation of patient anatomy and the surgical field. No post-operative major or minor complications occurred. We encountered no post-operative functional issues on the donor or recipient sites, and good clinical healing was observed in all patients. In conclusion, we believe that the galea-pericranium flap could represent a new donor site for the harvesting of a periosteum carrier flap.


2014 ◽  
Vol 7 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Justin W. Arner ◽  
Robert D. Santrock

Foot and ankle fusion is an important treatment for arthritis and deformities of the ankle and hindfoot. The literature has shown that there are improvements in fusion rates with the addition of bone graft and bone graft substitutes. Today autografts, specifically the iliac crest bone graft (ICBG), continue to be the gold standard despite significant donor site morbidity and nonunion rates, persisting around 10%. To address these drawbacks, bone graft substitutes have been developed. This article includes a historical review of the use, outcomes, and safety of autografts, allografts, and bone graft substitutes, such as ceramics, demineralized bone matrix, and platelet-derived growth factor.


Author(s):  
Gokhan Gundogdu ◽  
Zhamshid Okhunov ◽  
Vivian Cristofaro ◽  
Stephanie Starek ◽  
Faith Veneri ◽  
...  

Ureteral reconstruction with autologous tissue grafts is often limited by tissue availability and donor site morbidity. This study investigates the performance of acellular, bi-layer silk fibroin (BLSF) scaffolds in a porcine model of ureteroplasty. Tubular ureteroplasty with BLSF grafts in combination with transient stenting for 8 weeks was performed in adult female, Yucatan, mini-swine (N = 5). Animals were maintained for 12 weeks post-op with imaging of neoconduits using ultrasonography and retrograde ureteropyelography carried out at 2 and 4 weeks intervals. End-point analyses of ureteral neotissues and unoperated controls included histological, immunohistochemical (IHC), histomorphometric evaluations as well as ex vivo functional assessments of contraction/relaxation. All animals survived until scheduled euthanasia and displayed mild hydronephrosis (Grades 1-2) in reconstructed collecting systems during the 8 weeks stenting period with one animal presenting with a persistent subcutaneous fistula at 2 weeks post-op. By 12 weeks of scaffold implantation, unstented neoconduits led to severe hydronephrosis (Grade 4) and stricture formation in the interior of graft sites in 80% of swine. Bulk scaffold extrusion into the distal ureter was also apparent in 60% of swine contributing to ureteral obstruction. However, histological and IHC analyses revealed the formation of innervated, vascularized neotissues with a-smooth muscle actin+ and SM22α+ smooth muscle bundles as well as uroplakin 3A+ and pan-cytokeratin + urothelium. Ex vivo contractility and relaxation responses of neotissues were similar to unoperated control segments. BLSF biomaterials represent emerging platforms for tubular ureteroplasty, however further optimization is needed to improve in vivo degradation kinetics and mitigate stricture formation.


2021 ◽  
Vol 8 (12) ◽  
pp. 206
Author(s):  
Franck Simon ◽  
Jadson Moreira-Pereira ◽  
Jean Lamontagne ◽  
Rejean Cloutier ◽  
Francine Goulet ◽  
...  

The anterior cruciate ligament (ACL) of the knee joint is one of the strongest ligaments of the body and is often the target of traumatic injuries. Unfortunately, its healing potential is limited, and the surgical options for its replacement are frequently associated with clinical issues. A bioengineered ACL (bACL) was developed using a collagen matrix, seeded with autologous cells and successfully grafted and integrated into goat knee joints. We hypothesize that, in order to reduce the cost and simplify the model, an acellular bACL can be used as a substitute for a torn ACL, and bone plugs can be replaced by endobuttons to fix the bACL in situ. First, acellular bACLs were successfully grafted in the goat model with 18% recovery of ultimate tensile strength 6 months after implantation (94 N/mm2 vs. 520). Second, a bACL with endobuttons was produced and tested in an exvivo bovine knee model. The natural collagen scaffold of the bACL contributes to supporting host cell migration, growth and differentiation in situ post-implantation. Bone plugs were replaced by endobuttons to design a second generation of bACLs that offer more versatility as biocompatible grafts for torn ACL replacement in humans. A robust collagen bACL will allow solving therapeutic issues currently encountered by orthopedic surgeons such as donor-site morbidity, graft failure and post-traumatic osteoarthritis.


1983 ◽  
Vol 97 (6) ◽  
pp. 1950-1953 ◽  
Author(s):  
S M Seyedin ◽  
A Y Thompson ◽  
D M Rosen ◽  
K A Piez

An in vitro system has been developed to study the onset of chondrogenesis. Embryonic rat muscle mesenchymal cells, when treated in suspension culture with an extract of bovine bone matrix, synthesized cartilage-specific proteoglycan and type II collagen. The synthesis of these two macromolecules was assayed by the enzyme-linked immunosorbent assay inhibition technique. Further evidence of chondrogenesis was demonstrated by morphological changes of treated cells when cultured in firm agarose and stained for metachromatic matrix. Even with crude bone matrix extracts, the assay was sensitive at the microgram level and significant differences in cartilage macromolecules compared with controls were observed in 2-3 d. In vivo the same extract induced first cartilage and then bone.


2018 ◽  
Vol 27 (11) ◽  
pp. 1644-1656 ◽  
Author(s):  
Jordana Gilbert-Honick ◽  
Brian Ginn ◽  
Yuanfan Zhang ◽  
Sara Salehi ◽  
Kathryn R. Wagner ◽  
...  

Current treatment options for volumetric muscle loss (VML) are limited due to donor site morbidity, lack of donor tissue, and insufficient functional recovery. Tissue-engineered skeletal muscle grafts offer the potential to significantly improve functional outcomes. In this study, we assessed the potential pro-myogenic effects of human adipose-derived stem cells (ASCs) seeded onto electrospun uniaxially aligned fibrin hydrogel microfiber bundles. Although both uninduced and 5-azacytidine-induced ASCs exhibited alignment, elongation, and diffuse muscle marker expression when grown on microfiber bundles for 2 months in vitro, both groups failed to fully recapitulate myotube characteristics. To assess the muscle regeneration potential of ASCs in vivo, ASC-seeded fibrin microfiber bundles were implanted in a robust murine VML defect model. Minimal fibrosis was observed surrounding implanted acellular hydrogel fibers at 2 and 4 weeks, and fibers seeded with ASCs exhibited up to 4 times higher volume retention than acellular fibers. We observed increased numbers of cells positive for the regenerating muscle marker embryonic myosin and the mature muscle marker myosin heavy chain in ASC-seeded fibers compared with acellular fibers at 1 and 3 months post-transplantation. Regenerating muscle cells were closely associated with ASC-derived cells and in some cases had potentially fused with them. These findings demonstrate that despite failing to undergo myogenesis in vitro, ASCs combined with electrospun fibrin microfibers moderately increased muscle reconstruction in vivo compared with acellular fibers following a severe VML defect.


2021 ◽  
Vol 22 (15) ◽  
pp. 7837
Author(s):  
Wonbin Park ◽  
Ge Gao ◽  
Dong-Woo Cho

The musculoskeletal system is a vital body system that protects internal organs, supports locomotion, and maintains homeostatic function. Unfortunately, musculoskeletal disorders are the leading cause of disability worldwide. Although implant surgeries using autografts, allografts, and xenografts have been conducted, several adverse effects, including donor site morbidity and immunoreaction, exist. To overcome these limitations, various biomedical engineering approaches have been proposed based on an understanding of the complexity of human musculoskeletal tissue. In this review, the leading edge of musculoskeletal tissue engineering using 3D bioprinting technology and musculoskeletal tissue-derived decellularized extracellular matrix bioink is described. In particular, studies on in vivo regeneration and in vitro modeling of musculoskeletal tissue have been focused on. Lastly, the current breakthroughs, limitations, and future perspectives are described.


Sign in / Sign up

Export Citation Format

Share Document